Name: \qquad

Entry number: \qquad

There are 3 questions for a total of 10 points.

1. Recall the Extended-Euclid-GCD algorithm discussed in class for finding the gcd of positive integers $a \geq b>0$ and integers x, y such that $a x+b y=\operatorname{gcd}(a, b)$. The algorithm makes a sequence of recursive calls until the second input becomes 0 . For example, the sequence of recursive calls along with the function-call returns for inputs $(2,1)$ are:

$$
\stackrel{(1,0,1)}{\leftarrow} \text { Extended-Euclid-GCD }(2,1) \stackrel{(1,1,0)}{\leftrightarrows} \text { Extended-Euclid-GCD }(1,0)
$$

(a) ($1 \frac{1}{2}$ points) Write down the sequence of recursive calls along with function-call returns that are made when the algorithms is executed with inputs $(995,53)$.

```
Solution: }\mp@subsup{}{(1,22,-413)}{\leftarrow}\mathrm{ Extended-Euclid-GCD(995,53) }\stackrel{(1,-\frac{17,22)}{\leftrightarrows}}{\leftrightarrows}\mathrm{ Extended-Euclid-GCD(53, 41)
(1,5;}\leftrightarrows) Extended-Euclid-GCD(41, 12) \stackrel{(1,-2,5)}{\leftrightarrows}\mathrm{ Extended-Euclid-GCD(12,5)
(1,1,-2)
    \leftrightarrows}\mathrm{ Extended-Euclid-GCD(5,2) }\stackrel{\leftrightarrow}{\leftrightarrows}\mathrm{ Extended-Euclid-GCD (2, 1)
(1,1,0)
    \leftrightarrows Extended-Euclid-GCD}(1,0
```

(b) ($1 / 2$ point) What is the inverse of 53 modulo 995 ? That is, give a positive integer x such that $53 \cdot x \equiv 1(\bmod 995)$. Write "not applicable" in case no such integer exists.

$$
\text { (b) } \quad 582
$$

2. State true or false with reasons:
(a) (1 point) For all positive integers $a \geq b>0$ there exists unique integers x, y such that $a x+b y=$ $\operatorname{gcd}(a, b)$.
(a) False

Solution: We give a counterexample. Consider $a=5$ and $b=3$. We have $2 \cdot 5+(-3) \cdot 3=$ $1=5 \cdot 5+(-8) \cdot 3$.
(b) (1 point) Let $m>2$ be a prime number and let $1<a<m$ be any integer. Then a has a unique inverse with respect to the operation multiplication modulo m. That is, there is a unique integer $1<b<m$ such that $a b \equiv 1(\bmod m)$.
(b) True

Solution: For the sake of contradiction let there be two inverses $1<b<c<m$ of a. Then we have:

$$
\begin{aligned}
b & \equiv(b \cdot(a c))(\bmod m) \\
& \equiv((b a) \cdot c)(\bmod m) \\
& \equiv c(\bmod m) .
\end{aligned}
$$

This is a contradiction. So the inverse of any $1<a<m$ is unique with respect to multiplication modulo m.
3. Consider one of the problems in the tutorial sheet related to the possible way of leaving a certain amount of water given two jugs with integer capacities S and L. Recall that you have unlimited source of water and nothing but the two given jugs. Answer the following questions:
(a) (3 points) Design an algorithm that takes as input three positive integers S, L, and B such that $B<S<L$ and outputs "Not Possible" if it is not possible to leave B litres of water in any of the two jugs and otherwise it outputs the precise way to make sure that one of the jugs has exactly B litres of water.

Solution: Here is the pseudocode for the algorithm.
JugProblem (S, L, B)

- $(d, x, y) \leftarrow$ ExtendedEuclidGCD (L, S)
- If $(d$ does not divide B) return ("Not possible")
- Compute q such that $B=d q$
- If $(x>0)$ return("Fill the smaller jug $q x$ times and keep emptying in the larger jug. Whenever the larger jug becomes full, it is emptied.")
- else return("Fill the larger jug $q y$ times and keep emptying in the smaller jug. Whenever the smaller jug becomes full, it is emptied.")
(b) (1 point) Execute your algorithm for input $S=15, L=21, B=12$ and write the output below.

Solution: Fill the smaller jug 12 times and keep emptying in the larger jug. Whenever the larger jug becomes full, it is emptied.
(c) (1 point) Execute your algorithm for input $S=5, L=8, B=3$ and write the output below.

Solution: Fill the larger jug 6 times and keep emptying in the smaller jug. Whenever the smaller jug becomes full, it is emptied.
(d) (1 point) Execute your algorithm for input $S=21, L=33, B=16$ and write the output below.

Solution: Not possible.

