Entry number: \qquad

There are 2 questions for a total of 10 points.

1. (5 points) Prove or disprove: Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$be any functions such that:
2. $f(n)$ is $O(g(n))$, and
3. p and q are functions mapping \mathbb{Z}^{+}to \mathbb{R}^{+}where $p(n)=\log f(n)$ and $q(n)=\log g(n)$. Then $p(n)$ is $O(q(n))$.
4. (5 points) Consider the following problem:

SAME-BEHAVIOUR: Given descriptions $\langle A\rangle,\langle B\rangle$ of algorithms A and B respectively, determine if the behaviour of algorithms A and B are the same on all inputs.
(Algorithms A and B are said to have the same behaviour on input x, if either they both halt (exclusive-)or both do not halt.)
An algorithm P is said to solve the above problem if $P(\langle A\rangle,\langle B\rangle)$ halts and outputs 1 when A and B have the same behaviour on all inputs, and it halts and outputs 0 otherwise.
Prove: There does not exist an algorithm P that solves the problem SAME-BEHAVIOUR.

