Name: \qquad

Entry number: \qquad
There are 2 questions for a total of 10 points.

1. (5 points) Prove or disprove: $[-1,1]$ has the same cardinality as $(1,3) \cup(4,6)$.

Solution: We give injective mappings from $[-1,1]$ to $(1,3) \cup(4,6)$ and from $(1,3) \cup(4,6)$ to $[-1,1]$ to show that the cardinality of $[-1,1]$ is the same as the cardinality of $(1,3) \cup(4,6)$.
Claim 1: There is an injective mapping from $[-1,1]$ to $(1,3) \cup(4,6)$.
Proof. Consider the function $f:[-1,1] \rightarrow(1,3) \cup(4,6)$ defined as:

$$
f(x)=0.5 \cdot x+2
$$

For any inputs $a, b \in[-1,1] f(a)=f(b)$ implies that $0.5 \cdot a+2=0.5 \cdot b+2$ which implies that $a=b$. This shows that f is injective.

This shows that $|[-1,1]| \leq|(1,3) \cup(4,6)|$.
Claim 2: There is an injective mapping from $(1,3) \cup(4,6)$ to $[-1,1]$.
Proof. Consider the function $g:(1,3) \cup(4,6) \rightarrow[-1,1]$ defined as:

$$
g(x)=0.1 \cdot x
$$

This function is injective since for any $a, b \in(1,3) \cup(4,6), f(a)=f(b)$ implies that $0.1 \cdot a=0.1 \cdot b$ which implies that $a=b$. This shows that g is injective.

The above claim shows that $|(1,3) \cup(4,6)| \leq|[-1,1]|$.
Using Schröeder-Bernstein Theorem, we conclude that $|[-1,1]|=|(1,3) \cup(4,6)|$.
2. Let A, B, C be non-empty sets, and let $g: A \rightarrow B$ and $h: A \rightarrow C$ and let $f: A \rightarrow B \times C$ defined as:

$$
f(x)=(g(x), h(x))
$$

Answer the following:
(a) ($1 / 2$ point) State true or false: If f is onto, then both g and h are onto.
(a) True
(b) ($1 / 2$ point) State true or false: If g and h are onto, then f is onto.
(b) False
(c) $(1 / 2$ point $)$ State true or false: If at least one of g, h are one-to-one, then f is one-to-one.
(c) True \qquad
(d) ($1 / 2$ point) State true or false: If g and h are not one-to-one, then f is not one-to-one.
(d) False \qquad
(e) (3 points) Give reasons for your answer to part (b).

Solution: We give a counter example. Let $A=B=\{1,2\}$ and let $g(x)=x$ and $h(x)=x$. Note that both g and h here are onto functions but f is not onto since (1,2) does not have a pre-image.

Reason for part (d) (You were not required to give this):

We give a counterexample. Consider $A=\{0,1,2,3\}, B=\{0,1\}=C$. Functions g and h are defined as follows: $g(0)=g(1)=0$ and $g(2) .=g(3)=1$ and $h(0)=h(2)=0$ and $h(1)=h(3)=1$. Hence g and h are not one-to-one. However, note that in this case $f(0)=(0,0), f(1)=(0,1), f(2)=(1,0)$, and $f(3)=(1,1)$ which is a one-to-one function.

