Name:

Entry number: \qquad

There are 2 questions for a total of 10 points.

1. (6 points) Prove or disprove: Given any 17 natural numbers, it is possible to choose 5 whose sum is divisible by 5 .

Solution: We will prove the above statement. For $i \in\{0,1,2,3,4\}$ let S_{i} denote the sub-collection of the numbers that leave a remainder i when divided by 5 . We break the proof into the following two cases:

Case 1 : At least one of $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$ is empty.
In this case, there is one sub-collection that has at least 5 numbers (otherwise the sum of numbers in all the sub-collections cannot exceed 16). WLOG, let this sub-collection be S_{i}. Consider any five numbers from S_{i}. These numbers can be written as: $5 k_{1}+i, 5 k_{2}+i, 5 k_{3}+$ $i, 5 k_{4}+i, 4 k_{5}+i$ for some natural numbers k_{1}, \ldots, k_{5} since S_{i} contains numbers that leave remainder i when divided by i. The sum of these numbers is $5\left(k_{1}+k_{2}+k_{3}+k_{4}+k_{5}\right)+5 i$ which is divisible by 5 .

Case 2 None of the sets are empty.
In this case, consider one number from each of the sub-collections $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$. These numbers can be written as $5 k_{0}, 5 k_{1}+1,5 k_{2}+2,5 k_{3}+3,5 k_{4}+4$ for some natural numbers k_{0}, \ldots, k_{4} from the definition of S_{0}, \ldots, S_{4}. The sum of these numbers is $5\left(k_{0}+k_{1}+k_{2}+k_{3}+k_{4}\right)+10$ which is divisible by 5 .
2. (4 points) Prove or disprove: For any positive integer $n, n^{5}-5 n^{3}+4 n$ is always divisible by 5 .

Solution: We will prove the above statement. Note that $n^{5}-5 n^{3}+4 n$ can be factored as follows:

$$
n^{5}-5 n^{3}+4 n=n\left(n^{2}-1\right)\left(n^{2}-4\right)=(n-2)(n-1) n(n+1)(n+2)
$$

We can now consider the following cases:

1. n leaves remainder 0 when divided by 5 : In this case, the number is divisible by 5 .
2. n leaves remainder 1 when divided by 5 : In this case, $(n-1)$ is divisible by 5 and hence the number is divisible by 5 .
3. n leaves remainder 2 when divided by 5 : In this case, $(n-2)$ is divisible by 5 and hence the number is divisible by 5 .
4. n leaves remainder 3 when divided by 5 : In this case, $(n+2)$ is divisible by 5 and hence the number is divisible by 5 .
5. n leaves remainder 4 when divided by 5 : In this case, $(n+1)$ is divisible by 5 and hence the number is divisible by 5 .

Since $n^{5}-5 n^{3}+4 n$ is divisible by 5 in all the above cases (representing all possibilities for number n), we conclude that $n^{5}-5 n^{3}+4 n$ is divisible by 5 for all positive integers n.

