Name:	
Entry number:	

There are 2 questions for a total of 10 points.

- 1. (5 points) Consider the following predicates:
 - 1. D(x): x is a dog.
 - 2. C(x): x is a cat.
 - 3. M(x): x is a mouse.
 - 4. B(x): x barks at night.
 - 5. H(x,y): x has y.
 - 6. L(x): x is a light sleeper.

Express each of the statements using quantifiers and the predicates given above. Use the domain as the set of all living creatures.

	Statement	Quantified expression
S_1	All dogs bark at night.	
S_2	Anyone who has any cats will not have any mice.	
S_3	Light sleepers do not have anything which barks at night	
S_4	John has either a cat or a dog.	
S_5	If John is a light sleeper, then John does not have any mice.	

- 2. (5 points) Consider the quantified expressions $S_1, ..., S_5$ obtained in the previous problem. Use the expressions obtained in the previous problem to replace $S_1, ..., S_5$ below and then determine whether it makes a valid argument form. Explain your answer. (If your answer is "yes", then you need to show all steps while using rules of inference)
 - S_1
 - S_{2}
 - S_3
 - $\frac{S_4}{\cdot S_2}$

CSL202: Discrete Mathematical Structures (Semester-I-2018-19)	Quiz-02
•	