Name: $\qquad$
Entry number: $\qquad$
There are 2 questions for a total of 10 points.

1. (5 points) Consider the following predicates:
2. $D(x): x$ is a dog.
3. $C(x): x$ is a cat.
4. $M(x): x$ is a mouse.
5. $B(x): x$ barks at night.
6. $H(x, y): x$ has $y$.
7. $L(x): x$ is a light sleeper.

Express each of the statements using quantifiers and the predicates given above. Use the domain as the set of all living creatures.

|  | Statement | Quantified expression |
| :--- | :--- | :--- |
| $S_{1}$ | All dogs bark at night. | $\forall x[D(x) \rightarrow B(x)]$ |
| $S_{2}$ | Anyone who has any cats will not <br> have any mice. | $\forall x \forall y[(H(x, y) \wedge C(y)) \rightarrow \neg(\exists z(H(x, z) \wedge M(z)))]$ |
| $S_{3}$ | Light sleepers do not have any- <br> thing which barks at night. | $\forall x[L(x) \rightarrow \neg(\exists y(H(x, y) \wedge B(y)))]$ |
| $S_{4}$ | John has either a cat or a dog. | $\exists x[H(J o h n, x) \wedge(C(x) \vee D(x))]$ |
| $S_{5}$ | If John is a light sleeper, then <br> John does not have any mice. | $L(J o h n) \rightarrow \neg(\exists x(H(J o h n, x) \wedge M(x)))$ |

2. (5 points) Consider the quantified expressions $S_{1}, \ldots, S_{5}$ obtained in the previous problem. Use the expressions obtained in the previous problem to replace $S_{1}, \ldots, S_{5}$ below and then determine whether it makes a valid argument form. Explain your answer. (If your answer is "yes", then you need to show all steps while using rules of inference)

$$
\begin{aligned}
& S_{1} \\
& S_{2} \\
& S_{3} \\
& S_{4} \\
& \hline \therefore S_{5}
\end{aligned}
$$

Solution: We obtain the following argument form by replacing the $S_{1}, \ldots, S_{5}$ above.

$$
\begin{aligned}
& \forall x[D(x) \rightarrow B(x)] \\
& \forall x \forall y[(H(x, y) \wedge C(y)) \rightarrow \neg(\exists z(H(x, z) \wedge M(z)))] \\
& \forall x[L(x) \rightarrow \neg(\exists y(H(x, y) \wedge B(y)))] \\
& \exists x[H(\operatorname{John}, x) \wedge(C(x) \vee D(x))] \\
& \therefore \therefore L(J o h n) \rightarrow \neg(\exists x(H(\text { John }, x) \wedge M(x)))
\end{aligned}
$$

We will show that the above argument form is valid using rules of inference:

1. $\forall x[D(x) \rightarrow B(x)]$ (Premise)
2. $\forall x \forall y[(H(x, y) \wedge C(y)) \rightarrow \neg(\exists z(H(x, z) \wedge M(z)))]$ (Premise)
3. $\forall x[L(x) \rightarrow \neg(\exists y(H(x, y) \wedge B(y)))]$ (Premise)
4. $\exists x[H(J o h n, x) \wedge(C(x) \vee D(x))]$ (Premise)
5. $H(J o h n, a) \wedge(C(a) \vee D(a))$ for a particular element $a$ in domain (Existential instantiation using (4))
6. $H(J o h n, a)$ (Simplification using (5))
7. $C(a) \vee D(a)$ (Simplification using (5))
8. $D(a) \rightarrow B(a)$ (Universal instantiation using (1))
9. $\neg D(a) \vee B(a)$
(From (8) using $p \rightarrow q \equiv \neg p \vee q$ )
10. $(\neg H(J o h n, a) \vee \neg C(a)) \rightarrow \neg \exists z(H(J o h n, z) \wedge M(z))$
(Universal instantiation using (2))
11. $\forall z[\neg H(J o h n, a) \vee \neg C(a) \vee \neg H(J o h n, z) \vee \neg M(z)] \quad$ (From (10) using DeMorgan's law for quantifiers and $p \rightarrow q \equiv \neg p \vee q$ )
12. $\neg H(J o h n, a) \vee \neg C(a) \vee \neg H(J o h n, b) \vee \neg M(b)$ for an arbitrary $b$ in domain
(Universal instantiation using (11))
13. $\forall x \forall y[\neg L(x) \vee \neg H(x, y) \vee \neg B(y)] \quad$ (From (3) using DeMorgan's law for quantifiers and $p \rightarrow q \equiv \neg p \vee q)$
14. $\neg L(J o h n) \vee \neg H(J o h n, a) \vee \neg B(a) \quad$ (Universal instantiation using (13))
15. $C(a) \vee B(a)$
(Resolvent of (7) and (9))
16. $\neg C(a) \vee \neg H(J o h n, b) \vee \neg M(b)$
(Resolvent of (6) and (12))
17. $\neg L(J o h n) \vee \neg B(a)$
(Resolvent of (6) and (14))
18. $B(a) \vee \neg H(J o h n, b) \vee \neg M(b)$ (Resolvent of (15) and (16))
19. $\neg L(J o h n) \vee \neg H(J o h n, b) \vee \neg M(b)$ (Resolvent of (17) and (18))
20. $\forall x[\neg L(J o h n) \vee \neg H(J o h n, x) \vee \neg M(x)]$ (Universal generalization using (19))
21. $L(J o h n) \rightarrow \neg(\exists x(H(J o h n, x) \wedge M(x)))$ (Using Demorgan's law for quantifiers and $p \rightarrow q \equiv \neg p \vee q)$
