
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

A team is said to be eliminated if it cannot end with
maximum number of wins.

Can we say that Supergiants have been eliminated give the
current scenario?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 9
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
4 games between Daredevils and Sunrisers.

Can we say that Supergiants have been eliminated give the
current scenario?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins
denoted by w(i).There are G (i , j) games yet to be played between
team i and j . Design an algorithm to determine whether a given
team x has been eliminated.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Consider the following flow network

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
Can we find such a subset T?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof.

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A. Then we have:

C (A,B) =
∑
i∈T

(m − w(i)) +
∑
{i,j}6⊂T

G (i , j) < g∗

⇒ m · |T | −
∑
i∈T

w(i) + (g∗ −
∑
{i,j}⊂T

G (i , j)) < g∗

⇒
∑
i∈T

w(i) +
∑
{i,j}⊂T

G (i , j) > m · |T |

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Course Overview

Basic graph algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flow

Computational Intractability

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?

There are lots of problems arising in various fields for which
this question is unresolved.

Question 2: Are these problems related in some manner?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?

There are lots of problems arising in various fields for which
this question is unresolved.

Question 2: Are these problems related in some manner?

Question 3: If someone discovers an efficient algorithm to one
of these difficult problems, then does that mean that there are
efficient algorithms for other problems? If so, how do we
obtain such an algorithm.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Polynomial-time reduction

NP-complete problems: This is a large class of problems such
that all problems in this class are equivalent in the following
sense:

The existence of a polynomial-time algorithm for
any one problem in this class implies the existence of
polynomial-time algorithm for all of them.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Polynomial-time reduction

NP-complete problems: This is a large class of problems such
that all problems in this class are equivalent in the following sense:

The existence of a polynomial-time algorithm for any
one problem in this class implies the existence of
polynomial-time algorithm for all of them.

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 1: BIPARTITE-MATCHING ≤p MAX-FLOW.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 2: Suppose Y ≤p X . If X can be solved in polynomial
time, then Y can be solved in polynomial time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 2: Suppose Y ≤p X . If X can be solved in polynomial
time, then Y can be solved in polynomial time.
Claim 3: Suppose Y ≤p X . If Y cannot be solved in
polynomial time, then X cannot be solved in polynomial time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

