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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm? O(m · C )

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for C =

∑
e out of s c(e) iterations.

Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 7, f (v , u) = 0, f (v , q) =
7, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 0
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 4
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 12, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 12, f (p, v) = 0, f (p, t) = 19, f (q, p) = 7, f (q, t) = 4
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Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

How do we prove that the flow returned by the Ford-Fulkerson

algorithm is the maximum flow?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)

Definition (s − t cut)

A partition of vertices (A,B) is called an s − t cut iff A contains s and
B contains t.

Definition (Capacity of s − t cut)

The capacity of an s − t cut (A,B) is defined as
C (A,B) =

∑
e out of A c(e).
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).

Proof of claim 1.1.

v(f ) = f out({s})− f in({s}) and for all other nodes
v ∈ A, f out({v})− f in({v}) = 0. So,

v(f ) =
∑
v∈A

(f out({v})− f in({v})) = f out(A)− f in(A).
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).

Proof of claim 1.2.

v(f ) = f out(A)− f in(A) ≤ f out(A) ≤ C (A,B).
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Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).
Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.
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Network Flow
Maximum flow

Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.

Proof of claim 1.3

Let A∗ be all vertices reachable from s in the graph Gf (see figure
below). Then we have:

v(f ) = f out(A∗)− f in(A∗)

= f out(A∗)− 0

= C (A∗,B∗)
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Network Flow
Maximum flow

Theorem (Max-flow-min-cut theorem)

In every flow network, the maximum value of s-t flow is equal to
the minimum capacity of s-t cut.
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Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.
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Applications of Network Flow
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Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give
a maximum matching in the graph.

Example:
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Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .
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Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .
Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

A team is said to be eliminated if it cannot end with
maximum number of wins.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 9
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
4 games between Daredevils and Sunrisers.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins
denoted by w(i).There are G (i , j) games yet to be played between
team i and j . Design an algorithm to determine whether a given
team x has been eliminated.
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End
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