
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Course Overview

Graph Algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Main Idea

Main Idea: Reduction
1 We will obtain an algorithm A for a Network Flow problem.
2 Given a new problem, we will rephrase this problem as a

Network Flow problem.
3 We will then use algorithm A to solve the rephrased problem

and obtain a solution.
4 Finally, we build a solution for the original problem using the

solution to the rephrased problem.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Introduction

We want to model various kinds of networks using graphs and
then solve real world problems with respect to these networks
by studying the underlying graph.

One problem that arises in network design is routing “flows”
within the network.

Transportation Network: Vertices are cities and edges denote
highways. Every highway has certain traffic capacity. We are
interested in knowing the maximum amount commodity that
can be shipped from a source city to a destination city.
Computer Networks: Edges are links and vertices are switches.
Each link has some capacity of carrying packets. Again, we are
interested in knowing how much traffic can a source node send
to a destination node.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E ) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E ) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Given such a graph, an “s − t flow” in the graph is a function
f that maps the edges to non-negative real numbers such that
the following properties are satisfied:

(a) Capacity constraint: For every edge e, 0 ≤ f (e) ≤ c(e).
(b) Flow conservation: For every internal node v :∑

e into v

f (e) =
∑

e out of v

f (e)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: Routing 20 units of flow from s to t. Is it possible to “push more
flow”?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: We should reset initial flow (u, v) to 10.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: We should reset initial flow (u, v) to 10. Maximum flow from s is 30.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Graph Gf . (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
= 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u,
t) = 10, f’(v, t) = 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Graph Gf ′ . (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u, t) = 10,
f’(v, t) = 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Residual graph Gf :

Forward edges: For every edge e in the original graph, there are
(c(e)− f (e)) units of more flow we can send along that edge. So,
we set the weight of this edge (c(e)− f (e)).
Backward edges: For every edge e = (u, v) in the original graph,
there are f (e) units of flow that we can undo. So we add a reverse
edge e′ = (v , u) and set the weight of e′ to f (e).

Figure: Graph Gf . (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
= 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Augmenting flow in Gf :

Let P be a simple s − t path in Gf . Note that this contains
forward and backward edges.
Let emin be an edge in the path P with minimum weight wmin

For every forward edge e in P, set f ′(e)← f (e) + wmin

For every backward edge (x , y) in P, set f ′(y , x)← f (y , x)− wmin

For all remaining edges e, f ′(e) = f (e)

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u,
t) = 10, f’(v, t) = 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Claim 1: f ′ is an s − t flow.
Proof sketch:

Capacity constraint for each edge is satisfied.
Flow conservation at each vertex is satisfied.

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u,
t) = 10, f’(v, t) = 20)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for C =

∑
e out of s c(e) iterations.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for C =

∑
e out of s c(e) iterations.

Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm? O(m · C )

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for C =

∑
e out of s c(e) iterations.

Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 7, f (v , u) = 0, f (v , q) =
7, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 0

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 12, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 12, f (p, v) = 0, f (p, t) = 19, f (q, p) = 7, f (q, t) = 4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


