COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Dynamic Programming

Dynamic Programming

Longest common subsequence

- Here is a memoized version of the recursive algorithm.

Algorithm

```
LCS-mem(S, n,T,m)
    - If ( }n=0\mathrm{ OR m=0) then return(0)
    - If (L[n,m] is known) then return(L[n,m])
    - If (S[n] =S[m])
    - length }\leftarrow1+\operatorname{LCS-mem}(S,n-1,T,m-1
    - If (S[n] = T[m])
    - length }\leftarrow\operatorname{max{LCS-mem (S, n,T,m-1),
        LCS-mem(S,n-1,T,m)}
    - L[n,m]\leftarrow length
    - return(length)
```

- What is the running time of the above algorithm? $O(n m)$

Dynamic Programming

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Example: Let $(\{1,2,3,5,6,7\}, 10)$ be the input instance.
- What is the optimal solution?

Dynamic Programming

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Example: Let ([1, 2, 3, 5, 6, 7], 10) be the input instance.
- What is the optimal solution? $\{2,3,4\}$
- Since $w(2)=2, w(3)=3, w(4)=5$ and

$$
w(2)+w(3)+w(4)=10
$$

Dynamic Programming

0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq W$.
- How do we define $M(i)$ in terms of $M(1), \ldots, M(i-1)$?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq W$.
- How do we define $M(i)$ in terms of $M(1), \ldots, M(i-1)$?
- Case 1: $i^{\text {th }}$ item is not in the optimal solution. Then $M(i)=M(i-1)$.
- Case 2: $i^{\text {th }}$ item is in the optimal solution. There is a problem here.

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i, w)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- Recursive formulation:
- Case 1: $i^{\text {th }}$ item is not in the optimal solution. Then

$$
M(i, w)=M(i-1, w)
$$

- Case 2: $i^{\text {th }}$ item is in the optimal solution. Then

$$
\overline{M(i, w)}=M(i-1, w-w(i))+w(i)
$$

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Dynamic Programming solution:
- $M(i, w)$: The maximum weight that can be filled using items
$\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- If $w(i)>w$, then $M(i, w)=M(i-1, w)$
- If $w(i) \leq w$, then
$M(i, w)=\max \{M(i-1, w), M(i-1, w-w(i))+w(i)\}$
- $\forall w \leq W, M(1, w)=w(1)$ if $w(1) \leq w$ and 0 otherwise.

- What is the running time for filling the above table?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Dynamic Programming solution:
- $M(i, w)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- If $w(i)>w$, then $M(i, w)=M(i-1, w)$
- If $w(i) \leq w$, then
$M(i, w)=\max \{M(i-1, w), M(i-1, w-w(i))+w(i)\}$
- $\forall w \leq W, M(1, w)=w(1)$ if $w(1) \leq w$ and 0 otherwise.

- What is the running time for filling the above table? $O(n \cdot W)$

End

