COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

- Basic graph algorithms
- Algorithm Design Techniques:
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Network Flows
- Computational Intractability

Divide and Conquer

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

-≣ ►

<⊡> <≣

- You have already seen multiple examples of Divide and Conquer algorithms:
 - Binary Search
 - Merge Sort
 - Quick Sort
 - Multiplying two *n*-bit numbers in $O(n^{\log_2 3})$ time.

• <u>Main Idea</u>: Divide the input into smaller parts. Solve the smaller parts and combine their solution.

/₽ ▶ < ∃ ▶ < ∃

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Example: Consider the integers sequence A = [7, 2, 8, 3, 4, 1, 9, 10]
- What is the total number of inversions?

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Example: Consider the integers sequence A = [7, 2, 8, 3, 4, 1, 9, 10]
- What is the total number of inversions? 10

- Naïve algorithm: Check A[i], A[j] for all pairs i < j.
- Running time of the naïve algorithm?

- Naïve algorithm: Check A[i], A[j] for all pairs i < j.
- Running time of the naïve algorithm? $O(n^2)$

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Divide and conquer strategy:
 - Divide the array into two parts A_L and A_R
 - Count the number of inversions c_L in A_L
 - Count the number of inversions c_R in A_R
 - Count the number of inversions cLR across AL and AR
 - Output $c_L + c_R + c_{LR}$

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Divide and conquer strategy:
 - Divide the array into two parts A_L and A_R
 - Count the number of inversions c_L in A_L
 - Count the number of inversions c_R in A_R
 - Count the number of inversions c_{LR} across A_L and A_R
 - Output $c_L + c_R + c_{LR}$
- How much time does it take to find the number of inversions across A_L and A_R ?
 - If we can do this in O(n) time, then the recurrence relation for the running time will be $T(n) \le 2 \cdot T(n/2) + cn$.
 - The solution for the above is $T(n) = O(n \log n)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Divide and conquer strategy:
 - Divide the array into two parts A_L and A_R
 - Count the number of inversions c_L in A_L
 - Count the number of inversions c_R in A_R
 - Count the number of inversions c_{LR} across A_L and A_R
 - Output $c_L + c_R + c_{LR}$
- How much time does it take to find the number of inversions across A_L and A_R?
 - Suppose we have sorted A_L and A_R , how much time does it take to count the inversions across A_L and A_R ?

伺 ト イヨト イヨト

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

- Divide and conquer strategy:
 - Divide the array into two parts A_L and A_R
 - Count the number of inversions c_L in A_L
 - Count the number of inversions c_R in A_R
 - Count the number of inversions c_{LR} across A_L and A_R
 - Output $c_L + c_R + c_{LR}$
- How much time does it take to find the number of inversions across A_L and A_R?
 - Suppose we have sorted A_L and A_R , how much time does it take to count the inversions across A_L and A_R ? O(n)

・ 同 ト ・ ヨ ト ・ ヨ ト

Counting inversions: Given a sequence of distinct integers, $\overline{A[1], A[2], ..., A[n]}$ output the number of pairs (i, j) such that i < jand A[i] > A[j]. Such pairs are called *inversions*.

Algorithm

SortCountInversions(A)

- if (|A| = 1) return(0, A)
- Let $A_L \leftarrow A[1]...A[n/2]$
- Let $A_R \leftarrow A[n/2+1]...A[n]$
- $(c_L, B_L) \leftarrow \texttt{SortCountInversions}(A_L)$
- $(c_R, B_R) \leftarrow \texttt{SortCountInversions}(A_R)$
- $-(c_{LR}, B) \leftarrow \texttt{MergeCount}(B_L, B_R)$
- return $((c_L + c_R + c_{LR}), B)$

伺 ト イヨト イヨト

Algorithm

 $\begin{aligned} &\text{SortCountInversions}(A) \\ &- \text{ if } (|A| = 1)\text{return}(0, A) \\ &- \text{ Let } A_L \leftarrow A[1]...A[n/2] \\ &- \text{ Let } A_R \leftarrow A[n/2 + 1]...A[n] \\ &- (c_L, B_L) \leftarrow \text{ SortCountInversions}(A_L) \\ &- (c_R, B_R) \leftarrow \text{ SortCountInversions}(A_R) \\ &- (c_{LR}, B) \leftarrow \text{ MergeCount}(B_L, B_R) \\ &- \text{ return}((c_L + c_R + c_{LR}), B) \end{aligned}$

Algorithm

SortCountInversions(A) - if (|A| = 1)return(0, A) - Let $A_L \leftarrow A[1]...A[n/2]$ - Let $A_R \leftarrow A[n/2 + 1]...A[n]$ - $(c_L, B_L) \leftarrow$ SortCountInversions(A_L) - $(c_R, B_R) \leftarrow$ SortCountInversions(A_R) - $(c_R, B_R) \leftarrow$ MergeCount(B_L, B_R)

- return($(c_L + c_R + c_{LR}), B$)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Algorithm

 $\begin{aligned} &\text{SortCountInversions}(A) \\ &- \text{ if } (|A| = 1)\text{return}(0, A) \\ &- \text{ Let } A_L \leftarrow A[1]...A[n/2] \\ &- \text{ Let } A_R \leftarrow A[n/2 + 1]...A[n] \\ &- (c_L, B_L) \leftarrow \text{ SortCountInversions}(A_L) \\ &- (c_R, B_R) \leftarrow \text{ SortCountInversions}(A_R) \\ &- (c_{LR}, B) \leftarrow \text{MergeCount}(B_L, B_R) \\ &- \text{ return}((c_L + c_R + c_{LR}), B) \end{aligned}$

Algorithm

 $\begin{aligned} &\text{SortCountInversions}(A) \\ &- \text{ if } (|A| = 1)\text{return}(0, A) \\ &- \text{ Let } A_L \leftarrow A[1]...A[n/2] \\ &- \text{ Let } A_R \leftarrow A[n/2 + 1]...A[n] \\ &- (c_L, B_L) \leftarrow \text{ SortCountInversions}(A_L) \\ &- (c_R, B_R) \leftarrow \text{ SortCountInversions}(A_R) \\ &- (c_{LR}, B) \leftarrow \text{MergeCount}(B_L, B_R) \\ &- \text{ return}((c_L + c_R + c_{LR}), B) \end{aligned}$

Algorithm

 $\begin{aligned} &\text{SortCountInversions}(A) \\ &- \text{ if } (|A| = 1)\text{return}(0, A) \\ &- \text{ Let } A_L \leftarrow A[1]...A[n/2] \\ &- \text{ Let } A_R \leftarrow A[n/2 + 1]...A[n] \\ &- (c_L, B_L) \leftarrow \text{ SortCountInversions}(A_L) \\ &- (c_R, B_R) \leftarrow \text{ SortCountInversions}(A_R) \\ &- (c_{LR}, B) \leftarrow \text{MergeCount}(B_L, B_R) \\ &- \text{ return}((c_L + c_R + c_{LR}), B) \end{aligned}$

Algorithm

 $\begin{aligned} &\text{SortCountInversions}(A) \\ &- \text{ if } (|A| = 1)\text{return}(0, A) \\ &- \text{ Let } A_L \leftarrow A[1]...A[n/2] \\ &- \text{ Let } A_R \leftarrow A[n/2 + 1]...A[n] \\ &- (c_L, B_L) \leftarrow \text{ SortCountInversions}(A_L) \\ &- (c_R, B_R) \leftarrow \text{ SortCountInversions}(A_R) \\ &- (c_{LR}, B) \leftarrow \text{ MergeCount}(B_L, B_R) \\ &- \text{ return}((c_L + c_R + c_{LR}), B) \end{aligned}$

Algorithm

SortCountInversions(A)

- if (|A| = 1) return(0)
- Let $A_L \leftarrow A[1]...A[n/2]$
- Let $A_R \leftarrow A[n/2 + 1]...A[n]$
- $(c_L, B_L) \leftarrow \texttt{SortCountInversions}(A_L)$
- $(c_R, B_R) \leftarrow \texttt{SortCountInversions}(A_R)$
- $(c_{LR}, B) \leftarrow \texttt{MergeCount}(B_L, B_R)$
- return($(c_L + c_R + c_{LR}), B$)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Algorithm

SortCountInversions(A)

- if (|A| = 1) return(0)
- Let $A_L \leftarrow A[1]...A[n/2]$
- Let $A_R \leftarrow A[n/2 + 1]...A[n]$
- $(c_L, B_L) \leftarrow \texttt{SortCountInversions}(A_L)$
- $(c_R, B_R) \leftarrow \texttt{SortCountInversions}(A_R)$
- $-(c_{LR}, B) \leftarrow \texttt{MergeCount}(B_L, B_R)$
- return($(c_L + c_R + c_{LR}), B$)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Algorithm

SortCountInversions(A)

- if (|A| = 1) return(0)
- Let $A_L \leftarrow A[1]...A[n/2]$
- Let $A_R \leftarrow A[n/2 + 1]...A[n]$
- $(c_L, B_L) \leftarrow \texttt{SortCountInversions}(A_L)$
- $(c_R, B_R) \leftarrow \texttt{SortCountInversions}(A_R)$
- $-(c_{LR}, B) \leftarrow \texttt{MergeCount}(B_L, B_R)$
- return($(c_L + c_R + c_{LR}), B$)

• Graph Algorithms

• Algorithm Design Techniques:

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows
- Computational Intractability

Dynamic Programming

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

э

_ र ≣ ≯

<⊡> <≣>

- <u>Main idea</u>: Break the given problem in to a few sub-problems and combine the solutions of the smaller sub-problems to get solutions to larger ones.
- How is it different than Divide and Conquer?
 - Here you are allowed overlapping sub-problems.

Dynamic Programming Main Ideas

- <u>Main idea</u>: Break the given problem in to a few sub-problems and combine the solutions of the smaller sub-problems to get solutions to larger ones.
- How is it different than Divide and Conquer?
 - Here you are allowed overlapping sub-problems.
- Suppose your recursive algorithm gives a recursion tree that has many common sub-problems (e.g., recursion for computing Fibonacci numbers), then it helps to save the solution of sub-problems and use this solution whenever the same sub-problem is called.
- Dynamic programming algorithms are also called *table-filling* algorithms

Longest increasing subsequence: You are given a sequence of integers A[1], A[2], ..., A[n] and you are asked to find a longest increasing subsequence of integers.

• Example: The longest increasing subsequence of the sequence $\overline{(7,2,8,6,3,6,9,7)}$ is ?

伺下 イヨト イヨト

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ