COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Course Overview

- Basic graph algorithms
- Algorithm Design Techniques:
- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows
- Computational Intractability

Divide and Conquer

Divide and Conquer

- You have already seen multiple examples of Divide and Conquer algorithms:
- Binary Search
- Merge Sort
- Quick Sort
- Multiplying two n-bit numbers in $O\left(n^{\log _{2} 3}\right)$ time.

Divide and Conquer

Main Idea

- Main Idea: Divide the input into smaller parts. Solve the smaller parts and combine their solution.

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Example: Consider the integers sequence $A=[7,2,8,3,4,1,9,10]$
- What is the total number of inversions?

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Example: Consider the integers sequence $A=[7,2,8,3,4,1,9,10]$
- What is the total number of inversions? 10

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Naïve algorithm: Check $A[i], A[j]$ for all pairs $i<j$.
- Running time of the naïve algorithm?

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Naïve algorithm: Check $A[i], A[j]$ for all pairs $i<j$.
- Running time of the naïve algorithm? $O\left(n^{2}\right)$

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Divide and conquer strategy:
- Divide the array into two parts A_{L} and A_{R}
- Count the number of inversions c_{L} in A_{L}
- Count the number of inversions c_{R} in A_{R}
- Count the number of inversions $c_{L R}$ across A_{L} and A_{R}
- Output $c_{L}+c_{R}+c_{L R}$

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Divide and conquer strategy:
- Divide the array into two parts A_{L} and A_{R}
- Count the number of inversions c_{L} in A_{L}
- Count the number of inversions c_{R} in A_{R}
- Count the number of inversions $c_{L R}$ across A_{L} and A_{R}
- Output $c_{L}+c_{R}+c_{L R}$
- How much time does it take to find the number of inversions across A_{L} and A_{R} ?
- If we can do this in $O(n)$ time, then the recurrence relation for the running time will be $T(n) \leq 2 \cdot T(n / 2)+c n$.
- The solution for the above is $T(n)=O(n \log n)$

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Divide and conquer strategy:
- Divide the array into two parts A_{L} and A_{R}
- Count the number of inversions c_{L} in A_{L}
- Count the number of inversions c_{R} in A_{R}
- Count the number of inversions $c_{L R}$ across A_{L} and A_{R}
- Output $c_{L}+c_{R}+c_{L R}$
- How much time does it take to find the number of inversions across A_{L} and A_{R} ?
- Suppose we have sorted A_{L} and A_{R}, how much time does it take to count the inversions across A_{L} and A_{R} ?

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

- Divide and conquer strategy:
- Divide the array into two parts A_{L} and A_{R}
- Count the number of inversions c_{L} in A_{L}
- Count the number of inversions c_{R} in A_{R}
- Count the number of inversions $c_{L R}$ across A_{L} and A_{R}
- Output $c_{L}+c_{R}+c_{L R}$
- How much time does it take to find the number of inversions across A_{L} and A_{R} ?
- Suppose we have sorted A_{L} and A_{R}, how much time does it take to count the inversions across A_{L} and A_{R} ? $O(n)$

Divide and Conquer

Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers, $A[1], A[2], \ldots, A[n]$ output the number of pairs (i, j) such that $i<j$ and $A[i]>A[j]$. Such pairs are called inversions.

Algorithm

SortCountInversions (A)

- if $(|A|=1)$ return $(0, A)$
- Let $A_{L} \leftarrow A[1] \ldots A[n / 2]$
- Let $A_{R} \leftarrow A[n / 2+1] \ldots A[n]$
- $\left(c_{L}, B_{L}\right) \leftarrow$ SortCountInversions $\left(A_{L}\right)$
- $\left(c_{R}, B_{R}\right) \leftarrow$ SortCountInversions $\left(A_{R}\right)$
- $\left(c_{L R}, B\right) \leftarrow \operatorname{MergeCount}\left(B_{L}, B_{R}\right)$
- return $\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)$

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return \((0, A)\)
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    \(-\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

A							
7	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$	9	10

Divide and Conquer

Counting Inversions

Algorithm

```
SortCountInversions(A)
    - if (|A|=1)return(0,A)
    - Let }\mp@subsup{A}{L}{}\leftarrowA[1]\ldotsA[n/2
    - Let }\mp@subsup{A}{R}{}\leftarrowA[n/2+1]\ldotsA[n
    - (c}\mp@subsup{c}{L}{},\mp@subsup{B}{L}{})\leftarrow\mathrm{ SortCountInversions( }\mp@subsup{A}{L}{}
    - (c}\mp@subsup{c}{R}{},\mp@subsup{B}{R}{})\leftarrow\mathrm{ SortCountInversions ( }\mp@subsup{A}{R}{}\mathrm{ )
    - (c}\mp@subsup{c}{LR}{},B)\leftarrow\mathrm{ MergeCount ( }\mp@subsup{B}{L}{},\mp@subsup{B}{R}{}
    - return((c}\mp@subsup{c}{L}{}+\mp@subsup{c}{R}{}+\mp@subsup{c}{LR}{}),B
```

A							
7	2	8	3	4	1	9	10

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return \((0, A)\)
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    - \(\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

A							
7	2	8	3	4	1	9	10

$A_{L} \quad$| 7 | 2 | 8 | 3 |
| :--- | :--- | :--- | :--- |

count = 1

B

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions(A)
    - if (|A|=1)return(0,A)
    - Let }\mp@subsup{A}{L}{}\leftarrowA[1]\ldotsA[n/2
    - Let }\mp@subsup{A}{R}{}\leftarrowA[n/2+1]...A[n
    - (cL, 泣)\leftarrow SortCountInversions(A}\mp@subsup{A}{L}{}
    - (c}\mp@subsup{c}{R}{},\mp@subsup{B}{R}{})\leftarrow\mathrm{ SortCountInversions(AR)
    - (c}\mp@subsup{c}{LR}{},B)\leftarrow\mathrm{ MergeCount (BL, 的)
    - return((cLL + cr + c cLR ),B)
```

7	A						
7	2	8	3	4	1	9	10

$A_{L} \quad$| 7 | 2 | 8 | 3 |
| :--- | :--- | :--- | :--- |\quad| 4 | 1 | 9 | 10 |
| :--- | :--- | :--- | :--- |A_{R}

count $=2$

1	2	3					
B							

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions(A)
    - if (|A|=1)return(0,A)
    - Let }\mp@subsup{A}{L}{}\leftarrowA[1]\ldotsA[n/2
    - Let }\mp@subsup{A}{R}{}\leftarrowA[n/2+1]...A[n
    - (cL, 泣)\leftarrow SortCountInversions(A}\mp@subsup{A}{L}{}
    - (c}\mp@subsup{c}{R}{},\mp@subsup{B}{R}{})\leftarrow\mathrm{ SortCountInversions(AR)
    - (c}\mp@subsup{c}{LR}{},B)\leftarrow\mathrm{ MergeCount (BL, 的)
    - return((cLL + cr + c cLR ),B)
```

A							
7	2	8	3	4	1	9	10

count $=2$

1	2	3	4				

B

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return \((0, A)\)
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    \(-\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

A							
7	2	8	3	4	1	9	10

$A_{L} \quad$| 7 | 2 | 8 | 3 |
| :--- | :--- | :--- | :--- |\quad| 4 | 1 | 9 | 10 |
| :--- | :--- | :--- | :--- |A_{R}

count $=4$

B

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return( 0 )
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    \(-\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

A							
7	2	8	3	4	1	9	10

$B_{\llcorner } \quad$| 2 | 3 | 7 | 8 |
| :--- | :--- | :--- | :--- |

1	2	3	4	7	8		

B

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return( 0 )
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    \(-\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

7	A						
7	2	8	3	4	1	9	10

1	2	3	4	7	8	9	
B							

Divide and Conquer

Counting Inversions

```
Algorithm
SortCountInversions ( \(A\) )
    - if \((|A|=1)\) return( 0 )
    - Let \(A_{L} \leftarrow A[1] \ldots A[n / 2]\)
    - Let \(A_{R} \leftarrow A[n / 2+1] \ldots A[n]\)
    - \(\left(c_{L}, B_{L}\right) \leftarrow\) SortCountInversions \(\left(A_{L}\right)\)
    - \(\left(c_{R}, B_{R}\right) \leftarrow\) SortCountInversions \(\left(A_{R}\right)\)
    \(-\left(c_{L R}, B\right) \leftarrow\) MergeCount \(\left(B_{L}, B_{R}\right)\)
    - return \(\left(\left(c_{L}+c_{R}+c_{L R}\right), B\right)\)
```

$\mathbf{7}$	\mathbf{A}						
7	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$	9	10

1	2	3	4	7	8	9	10
B							

Course Overview

- Graph Algorithms
- Algorithm Design Techniques:
- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows
- Computational Intractability

Dynamic Programming

Dynamic Programming
 \section*{Main Ideas}

- Main idea: Break the given problem in to a few sub-problems and combine the solutions of the smaller sub-problems to get solutions to larger ones.
- How is it different than Divide and Conquer?
- Here you are allowed overlapping sub-problems.

Dynamic Programming

Main Ideas

- Main idea: Break the given problem in to a few sub-problems and combine the solutions of the smaller sub-problems to get solutions to larger ones.
- How is it different than Divide and Conquer?
- Here you are allowed overlapping sub-problems.
- Suppose your recursive algorithm gives a recursion tree that has many common sub-problems (e.g., recursion for computing Fibonacci numbers), then it helps to save the solution of sub-problems and use this solution whenever the same sub-problem is called.
- Dynamic programming algorithms are also called table-filling algorithms

Dynamic Programming
 Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of integers $A[1], A[2], \ldots, A[n]$ and you are asked to find a longest increasing subsequence of integers.

- Example: The longest increasing subsequence of the sequence $\overline{(7,2,8,6}, 3,6,9,7)$ is ?

End

