# COL106: Data Structures and Algorithms 

Ragesh Jaiswal, IIT Delhi

## Greedy Algorithms: Single Source Shortest Path

## Greedy Algorithms <br> Shortest path

- Path length: Let $G=(V, E)$ be a weighted directed graph. Given a path in $G$, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from $u$ to $v$ is the path with minimum length.


## Greedy Algorithms

## Shortest path

- Path length: Let $G=(V, E)$ be a weighted directed graph. Given a path in $G$, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from $u$ to $v$ is the path with minimum length.


## Problem

Single source shortest path: Given a weighted, directed graph $\bar{G}=(V, E)$ with positive edge weights and a source vertex $s$, find the shortest path from $s$ to all other vertices in the graph.


## Greedy Algorithms <br> Shortest path

## Problem

Single source shortest path: Given a weighted, directed graph $G=(V, E)$ with positive edge weights and a source vertex $s$, find the shortest path from $s$ to all other vertices in the graph.

- Claim 1: Shortest path is a simple path.


## Greedy Algorithms

## Shortest path

## Problem

Single source shortest path: Given a weighted, directed graph $G=(V, E)$ with positive edge weights and a source vertex $s$, find the shortest path from $s$ to all other vertices in the graph.

- Claim 1: Shortest path is a simple path.
- Claim 2: For any vertex $x \in V$, let $I(s, x)$ denote the length of the shortest path from $s$ to vertex $x$. Let $S$ be any subset of vertices containing $s$. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, $(u, v)$ is a cut edge),
(2) $\left(I(s, u)+W_{e}\right)$ is the least among all such cut edges.

Then $I(s, v)=I(s, u)+W_{e}$.

## Greedy Algorithms

## Shortest path

- Claim 2: For any vertex $x \in V$, let $I(s, x)$ denote the length of the shortest path from $s$ to vertex $x$. Let $S$ be any subset of vertices containing $s$. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, $(u, v)$ is a cut edge),
(2) $\left(I(s, u)+W_{e}\right)$ is the least among all such cut edges.

Then $I(s, v)=I(s, u)+W_{e}$.


## Greedy Algorithms

## Shortest path

- Claim 2: For any vertex $x \in V$, let $I(s, x)$ denote the length of the shortest path from $s$ to vertex $x$. Let $S$ be any subset of vertices containing $s$. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, $(u, v)$ is a cut edge),
(2) $\left(I(s, u)+W_{e}\right)$ is the least among all such cut edges.

Then $I(s, v)=I(s, u)+W_{e}$.

## Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$


## Greedy Algorithms

## Shortest path

- Claim 2: For any vertex $x \in V$, let $I(s, x)$ denote the length of the shortest path from $s$ to vertex $x$. Let $S$ be any subset of vertices containing $s$. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, $(u, v)$ is a cut edge),
(2) $\left(I(s, u)+W_{e}\right)$ is the least among all such cut edges.

Then $I(s, v)=I(s, u)+W_{e}$.

## Algorithm

Dijkstra's Algorithm ( $G, s$ )
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$
- What is the running time of the above algorithm?


## Greedy Algorithms

## Shortest path

- Claim 2: For any vertex $x \in V$, let $I(s, x)$ denote the length of the shortest path from $s$ to vertex $x$. Let $S$ be any subset of vertices containing $s$. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, $(u, v)$ is a cut edge),
(2) $\left(I(s, u)+W_{e}\right)$ is the least among all such cut edges.

Then $I(s, v)=I(s, u)+W_{e}$.

## Algorithm

## Dijkstra's Algorithm ( $G, s$ )

$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
- $S \leftarrow S \cup\{v\}$
- What is the running time of the above algorithm?
- Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.


## Greedy Algorithms

## Shortest path

```
Algorithm
Dijkstra's Algorithm ( \(G, s\) )
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
        \(-d(v) \leftarrow d(u)+W_{e}\)
        \(-S \leftarrow S \cup\{v\}\)
```



Figure: $d(s)=0$

## Greedy Algorithms

## Shortest path

```
Algorithm
Dijkstra's Algorithm ( \(G, s\) )
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
    \(-d(v) \leftarrow d(u)+W_{e}\)
    \(-S \leftarrow S \cup\{v\}\)
```



Figure: $d(s)=0 ; d(A)=1$

## Greedy Algorithms

## Shortest path

```
Algorithm
Dijkstra's Algorithm (G, s)
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
    \(-d(v) \leftarrow d(u)+W_{e}\)
    \(-S \leftarrow S \cup\{v\}\)
```



Figure: $d(s)=0 ; d(A)=1 ; d(E)=9$

## Greedy Algorithms

## Shortest path

## Algorithm

Dijkstra's Algorithm ( $G, s$ )
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$


Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15$

## Greedy Algorithms

## Shortest path

## Algorithm

```
Dijkstra's Algorithm(G,s)
    -S\leftarrow{s}
    -d(s)\leftarrow0
    - While S does not contain all vertices in G
    - Let e=(u,v) be a cut edge across (S,V\S) with minimum
        value of d(u)+We
    -d(v)\leftarrowd(u)+\mp@subsup{W}{e}{}
    -S\leftarrowS\cup{v}
```



Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15 ; d(C)=17$

## Greedy Algorithms

## Shortest path

## Algorithm

Dijkstra's Algorithm ( $G, s$ )
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$

Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15 ; d(C)=17 ; d(B)=21$

## Greedy Algorithms

## Shortest path

## Algorithm

Dijkstra's Algorithm ( $G, s$ )
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While $S$ does not contain all vertices in $G$
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$


Figure: The algorithm also implicitly produces a shortest path tree that gives the shortest paths from $s$ to all vertices.

## End

