COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

Greedy Algorithms: Single Source Shortest Path

▶ ∢ ≣

3) (3

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from *u* to *v* is the path with minimum length.

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from *u* to *v* is the path with minimum length.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G} = (V, E)$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G} = (V, E)$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

• <u>Claim 1</u>: Shortest path is a *simple* path.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G = (V, E)}$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

- <u>Claim 1</u>: Shortest path is a *simple* path.
- Claim 2: For any vertex x ∈ V, let I(s, x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

1
$$u \in S$$
, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(I(s, u) + W_e)$ is the least among all such cut edges.

Then $I(s, v) = I(s, u) + W_e$.

伺下 イヨト イヨト

<u>Claim 2</u>: For any vertex x ∈ V, let l(s, x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

$$\bullet u \in S, v \in V \setminus S \text{ (that is, } (u, v) \text{ is a cut edge)},$$

2 $(l(s, u) + W_e)$ is the least among all such cut edges.

Then $l(s, v) = l(s, u) + W_e$.

<u>Claim 2</u>: For any vertex x ∈ V, let l(s, x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

()
$$u \in S$$
, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(I(s, u) + W_e)$ is the least among all such cut edges.

Then $l(s, v) = l(s, u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

- 4 回 ト 4 ヨト 4 ヨト

 Claim 2: For any vertex x ∈ V, let l(s, x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

$$u \in S, v \in V \setminus S \text{ (that is, } (u, v) \text{ is a cut edge), }$$

2
$$(I(s, u) + W_e)$$
 is the least among all such cut edges.

Then $l(s, v) = l(s, u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

• What is the running time of the above algorithm?

 Claim 2: For any vertex x ∈ V, let I(s, x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

$$u \in S, v \in V \setminus S \text{ (that is, } (u, v) \text{ is a cut edge), }$$

2 $(I(s, u) + W_e)$ is the least among all such cut edges.

Then $l(s, v) = l(s, u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

- What is the running time of the above algorithm?
 - Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.

Algorithm

Dijkstra's Algorithm(G, s)

$$-S \leftarrow \{s\}$$

- $d(s) \leftarrow 0$
- While S does not contain all vertices in G
 - Let e = (u,v) be a cut edge across ($\mathcal{S}, V \setminus \mathcal{S})$ with minimum value of $d(u) + W_e$

$$- d(v) \leftarrow d(u) + W_{\epsilon}$$

 $-S \leftarrow S \cup \{v\}$

イロト イポト イヨト イヨト

э

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1

(日) (同) (三) (三)

э

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9

(日) (同) (日) (日) (日)

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15

・ロト ・部ト ・ヨト ・ヨト

э

Algorithm

Dijkstra's Algorithm(G,s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17

・ロト ・部ト ・ヨト ・ヨト

-

Algorithm

 $\begin{array}{l} \text{Dijkstra's Algorithm}(G,s)\\ &-S \leftarrow \{s\}\\ &-d(s) \leftarrow 0\\ &-\text{While }S \text{ does not contain all vertices in }G\\ &-\text{ Let }e=(u,v) \text{ be a cut edge across }(S,V\setminus S) \text{ with minimum}\\ &\text{ value of }d(u)+W_e\\ &-d(v)\leftarrow d(u)+W_e\\ &-S\leftarrow S\cup\{v\}\end{array}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17; d(B) = 21

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: The algorithm also implicitly produces a *shortest path tree* that gives the shortest paths from s to all vertices.

(日) (同) (三) (三)

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

990