COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

< ≣ >

-∰ ► < ≣ ►

э

- Spanning Tree: Given a strongly connected graph $\overline{G} = (V, E)$, a spanning tree of G is a subgraph G' = (V, E') such that G' is a tree.
- Minimum Spanning Tree (MST): Given a strongly connected weighted graph G = (V, E), a Minimum Spanning Tree of G is a spanning tree of G of minimum total weight (i.e., sum of weight of edges in the tree).

Problem

Given a weighted graph G where all the edge weights are distinct, give an algorithm for finding the MST of G.

Theorem

<u>Cut property</u>: Given a weighted graph G = (V, E) where all the edge weights are distinct. Consider a non-empty proper subset S of V and $S' = V \setminus S$. Let e be the least weighted edge between any pair of vertices (u, v), where u is in S and v is in S'. Then e is necessarily present in all MSTs of G.

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} / / u$ is an arbitrary vertex in the graph - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$ - $T \leftarrow T \cup \{e\}$ - $S \leftarrow S \cup \{w\}$

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

$$-T \leftarrow T \cup \{e\}$$

 $- S \leftarrow S \setminus \{e\}$

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} //u$ is an arbitrary vertex in the graph - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$

$$- T \leftarrow T \cup \{e\}$$

-
$$S \leftarrow S \cup \{w\}$$

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} //u$ is an arbitrary vertex in the graph - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$

-
$$T \leftarrow T \cup \{e\}$$

$$-S \leftarrow S \cup \{w\}$$

Algorithm

Prim's Algorithm(G)
-
$$S \leftarrow \{u\} //u \text{ is an arbitrary vertex in the graph}$$

- $T \leftarrow \{\}$
- While S does not contain all vertices
- Let $e = (v, w)$ be the minimum weight edge between
S and $V \setminus S$
- $T \leftarrow T \cup \{e\}$

$$-S \leftarrow S \cup \{w\}$$

イロン イロン イヨン イヨン

æ

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} / / u$ is an arbitrary vertex in the graph - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$ - $T \leftarrow T \cup \{e\}$ - $S \leftarrow S \cup \{w\}$

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} //u \text{ is an arbitrary vertex in the graph}$ - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$ - $T \leftarrow T \cup \{e\}$ - $S \leftarrow S \cup \{w\}$

Algorithm

Prim's Algorithm(G)
-
$$S \leftarrow \{u\} //u \text{ is an arbitrary vertex in the graph}$$

- $T \leftarrow \{\}$
- While S does not contain all vertices
- Let $e = (v, w)$ be the minimum weight edge between
S and $V \setminus S$
- $T \leftarrow T \cup \{e\}$

$$-S \leftarrow S \cup \{w\}$$

イロン イロン イヨン イヨン

æ

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

-
$$S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$-S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

-
$$S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$-S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

-
$$S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; T \leftarrow \{\}$$

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

Algorithm

Prim's Algorithm(G) - $S \leftarrow \{u\} //u$ is an arbitrary vertex in the graph - $T \leftarrow \{\}$ - While S does not contain all vertices - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$

$$- T \leftarrow T \cup \{e\}$$

- $S \leftarrow S \cup \{w\}$
- What is the running time of Prim's algorithm?

伺 と く ヨ と く ヨ と

Algorithm

Prim's Algorithm(G)

- $S \leftarrow \{u\} \; / / u$ is an arbitrary vertex in the graph
- $T \leftarrow \{\}$
- While S does not contain all vertices
 - Let e = (v, w) be the minimum weight edge between S and $V \setminus S$

$$- T \leftarrow T \cup \{e\}$$

-
$$S \leftarrow S \cup \{w\}$$

- What is the running time of Prim's algorithm? $O(|E| \cdot \log |V|)$
 - Using a priority queue.

伺 と く ヨ と く ヨ と

Algorithm

Kruskal's Algorithm(G)

$$-S \leftarrow E; T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices
 - Let e be the minimum weight edge in the set S
 - If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

-
$$S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; \ T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices
 - //Note that G' = (V, T) contains dicsonnected components
 - Let e = (u, v) be the minimum weight edge in the set S
 - If e does not create a cycle in T
 - If u and v are in different components of G'

$$- T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

- <u>Union-Find</u>: Used for storing partition of a set of elements. The following two operations are supported:
 - **(**) Find (v): Find the partition to which the element v belongs.
 - 2 Union(u, v): Merge the partition to which u belongs with the partition to which v belongs.
- Consider the following data structure.

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v):
 - *Union*(*u*, *v*):

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v): O(1)
 - Union(u, v):

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v): O(1)
 - *Union*(*u*, *v*):
 - <u>Claim</u>: Performing k union operations takes $O(k \log k)$ time in the worst case when starting from a full partition.
 - <u>Proof sketch</u>: For any element *u*, every time its pointer needs to be changed, the size of the partition that it belongs to at least doubles in size. This means that the pointer for *u* cannot change more than $O(\log k)$ times.

伺下 イヨト イヨト

• Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)

- $T \leftarrow \{\}$
- Let ${\it S}$ be the list of edges sorted in increasing order of weight
- While the edge set $\ensuremath{\mathcal{T}}$ does not connect all the vertices
 - //Note that G' = (V, T) contains dissonnected components
 - Let e = (u, v) be the next edge in the list S
 - If e does not create a cycle in T
 - If u and v are in different components of G'
 - If $(Find(u) \neq Find(v))$
 - $T \leftarrow T \cup \{e\}$
 - Union(u, v)
- What is the running time of the above algorithm?

• Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)

- $T \leftarrow \{\}$

- Let ${\it S}$ be the list of edges sorted in increasing order of weight
- While the edge set $\ensuremath{\mathcal{T}}$ does not connect all the vertices
 - //Note that G' = (V, T) contains dissonnected components
 - Let e = (u, v) be the next edge in the list S
 - If e does not create a cycle in T
 - If u and v are in different components of G'
 - If $(Find(u) \neq Find(v))$
 - $T \leftarrow T \cup \{e\}$
 - Union(u, v)
- What is the running time of the above algorithm? $O(|E| \cdot \log |V|)$

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from *u* to *v* is the path with minimum length.

Greedy Algorithms Shortest path

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from *u* to *v* is the path with minimum length.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G} = (V, E)$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

990