COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

Graph Algoithms Strongly connected components

Algorithm

```
- time ← 0
GraphDFS-with-start-finish(G)
- While there is an "unexplored" vertex u
DFS-time(u)
DFS-time(u)
- Mark u as "explored" and set start(u) ← + + time
- While there is an "unexplored" neighbor v of u
- DFS-time(v)
- finish(u) ← + + time
```


・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

• Material that will be covered in the course:

- Basic graph algorithms
- Algorithm Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Network Flows
- Computational intractability

(4) (2) (4)

Greedy Algorithms

문 🛌 문

-<⊡> <≣>

- "A local (greedy) decision rule leads to a globally optimal solution."
- There are two ways to show the above property:
 - Greedy stays ahead
 - Exchange argument

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

□ > < = > <

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

- Candidate greedy choices:
 - Earliest start time
 - Smallest duration
 - Least overlapping

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

- Candidate greedy choices:
 - Earliest start time
 - Smallest duration
 - Least overlapping
 - Earliest finish time

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))
- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?

伺 と く ヨ と く ヨ と

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

• <u>Claim 1</u>: $F(a_1) \le F(o_1)$.

伺下 イヨト イヨト

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

- <u>Claim 1</u>: $F(a_1) \le F(o_1)$.
- Claim 2: If $F(a_1) \leq F(o_1)$, $F(a_2) \leq F(o_2)$, ..., $F(a_{i-1}) \leq F(o_{i-1})$, then $F(a_i) \leq F(o_i)$.

伺 と く ヨ と く ヨ と

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

• Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

• We will show by induction that $\forall i, F(a_i) \leq F(o_i)$

- Claim 1 (base case): $F(a_1) \leq F(o_1)$.
- Claim 2 (inductive step): If $F(a_1) \leq F(o_1)$, $F(a_2) \leq F(o_2)$, ..., $\overline{F(a_{i-1}) \leq F(o_{i-1})}$, then $F(a_i) \leq F(o_i)$.

• GreedySchedule could not have stopped after a_k .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))

• Running time?

Problem

Interval scheduling: Given a set of *n* intervals of the form $\overline{(S(i), F(i))}$, find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- While R is not empty
- Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
- Delete all intervals in R that overlaps with (S(i), F(i))

• Running time? $O(n \log n)$

・ 同 ト ・ ヨ ト ・ ヨ ト

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

990