COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Graph Algorithms BFS application

- Bipartite graph: A graph is bipartite iff the vertices can be partitioned into two sets such that there is no edge between any pair of vertices in the same set.

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Consider BFS below
- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$?

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$
$-\operatorname{Layer}(0)=\{s\}$
$-i \leftarrow 1$

- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Consider BFS below
- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$
$-\operatorname{Layer}(0)=\{s\}$
$-i \leftarrow 1$

- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer(i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- For sake of contradiction assume that the graph is bipartite.
- Consider a cycle of odd length with nodes numbered $v_{1}, v_{2}, \ldots, v_{2 k+1}$.
- Since the graph is bipartite the nodes may be partitioned into two sets X and Y s.t. there does not exist en edge between nodes in the same partition.
- If node v_{1} is in X, then v_{2} has to be in Y, and node v_{3} has to be in X and so on. So, node $v_{2 k+1}$ has to be in X. But then there is a edge between v_{1} and $v_{2 k+1}$.

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- Can you now use BFS to check if the graph is bipartite?

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- Can you now use BFS to check if the graph is bipartite?

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.
- Claim 1.2: If IsBipartite (G) outputs "yes", then G is bipartite.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.
- Claim 1.2: If IsBipartite (G) outputs "yes", then G is bipartite.
- Since the odd and the even layers forms the two partitions of a bipartite graph.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What is the running time of the above algorithm?

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What is the running time of the above algorithm? $O(n+m)$
- While running the BFS algorithm, we maintain an array A such that the $i^{\text {th }}$ entry of the array stores the layer to which the $i^{\text {th }}$ vertex belongs to as per the BFS execution. Note that maintaining such an array while running BFS will only cost $O(1)$ time per vertex. So the total time of running BFS and constructing the array A would be $O(n+m)$.
- Now, we need to go thorough all edges in the graph and for an edge (i, j), check if $A[i]=A[j]$. This would take a total of $O(m)$ time.
- So the total running time of the algorithm will be $O(n+m)$.

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What if G is not a strongly connected graph?

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Algorithm (for strongly connected graphs)

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")

Algorithm (for any graph)

IsBipartite (G)

- Let R contain all vertices of G
- While R is not empty
- Let s be an arbitrary vertex in R
- Run $\operatorname{BFS}(G, s)$ and check if two vertices in the same layer have an edge between them
- If yes then output("no")
- Remove all vertices from R that were explored while running $\operatorname{BFS}(G, s)$
- Output("yes")

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- What is the running time of DFS?

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- What is the running time of DFS? $O(n+m)$

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- The DFS algorithm defined the following "DFS tree" rooted at s
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms DFS

- The DFS algorithm defined the following "DFS tree" rooted at s
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms DFS

- DFS tree Vs BFS tree

Graph Algorithms

Connectivity

- A graph may not always be "connected".
- A connected component in an undirected graph is a maximal subgraph (maximal subset of vertices along with respective edges) such that there is a path between any pair of vertices in the subset.

Graph Algorithms

Connectivity

- In a directed graph, a strongly connected component is a maximal subgraph such that for each pair of vertices (u, v) in the subset, there is a path from u to v and there is a path from v to u.

Graph Algorithms

Connectivity

- Question: Given a directed graph, can a vertex be in two strongly connected components?

Graph Algorithms

Connectivity

- Question: Given a directed graph, can a vertex be in two strongly connected components? No
- For sake of contradiction, assume that there is a vertex v and vertex sets A, B in two strongly connected components s.t. $v \in A, v \in B$ and $A \neq B$.
- Claim: For ever pair of vertices $p, q \in A \cup B$, there is a path from p to q and there is a path from q to p.
- This implies that either A or B is not a maximal subset.

Graph Algorithms

Connectivity

- Question: Given a directed graph, can a vertex be in two strongly connected components? No

Problem

Given a directed graph and a vertex s. Give an algorithm to find the vertices in the strongly connected component containing s. What is the running time?

-

End

