COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

• Material that will be covered in the course:

- Basic graph algorithms
- Algorithm Design Techniques
 - Divide and Conquer
 - Greedy Algorithms
 - Dynamic Programming
 - Network Flows
- Computational intractability

(4) (2) (4)

Graphs

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

Graphs Introduction

- A way to represent a set of objects with pair-wise relationships among them.
- The objects are represented as vertices and the relationships are represented as edges.

Graphs Introduction

- Examples
 - Social networks
 - Communication networks
 - Transportation networks
 - Dependency networks

< E

B) 3

• Weighted graphs: There are weights associated with each edge quantifying the relationship. For example, delay in communication network.

• Directed graphs: Asymmetric relationships between the objects. For example, one way streets.

Graphs Introduction

- Path: A sequence of vertices $v_1, v_2, ..., v_k$ such that for any consecutive pair of vertices $v_i, v_{i+1}, (v_i, v_{i+1})$ is an edge in the graph. It is called a path from v_1 to v_k .
 - Simple path: A simple path from vertex u to a different vertex v is a path that has distinct vertices.
- Cycle: A cycle is a path where $v_1 = v_k$ and $v_1, ..., v_{k-1}$ are distinct vertices.
- The above definitions are for directed graphs but generalise for undirected graphs.

AP ► < E ►

• <u>Strongly connected</u>: A graph is called strongly connected iff for any pair of vertices *u*, *v*, there is a path from *u* to *v* and a path from *v* to *u*.

- <u>Tree</u>: A strongly connected, undirected graph is called a tree if it has no cycles.
- How many edges does a tree with *n* nodes have?

- Adjacency matrix: Store connectivity in a matrix.
- Space: $O(n^2)$

	v_1	v_2	v_3	v_4	v_5
v_1	0	1	1	1	0
v_2	1	0	1	0	0
v_3	1	1	0	1	0
v_4	1	0	1	0	0
v_5	0	0	0	0	0

< ∃ >

- Adjacency list: For each vertex, store its neighbors.
- Space: O(n+m)

-∰ ► < ≣ ►

B) 3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

< ≣ >

-∢∄⊁ ∢≣⊁

æ

Problem

Given an (undirected) graph G = (V, E) and two vertices s, t, check if there is a path between s and t.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Problem

Given an (undirected) graph G = (V, E) and two vertices s, t, check if there is a path between s and t.

- Alternate problem: What are the vertices that are reachable from *s*. Is *t* among these reachable vertices?
- This is also known as graph exploration. That is, explore all vertices reachable from a starting vertex s.
 - Breadth First Search (BFS)
 - Depth First Search (DFS)

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

-∰ ► < ≣ ►

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

伺 と く ヨ と く ヨ と

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

□ > < = > <

∃ >

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

→ < Ξ → <</p>

∃ >

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

→ < Ξ → <</p>

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

伺 と く ヨ と く ヨ と

Breadth First Search (BFS)

BFS(G, s)

- $Layer(0) = \{s\}$
- $i \leftarrow 1$
- While(true)
 - Visit all new nodes that have an edge to a vertex in Layer(i-1)
 - Put these nodes in the set Layer(i)
 - If Layer(i) is empty, then end
 - $i \leftarrow i + 1$

• <u>Theorem 1</u>: The shortest path from s to any vertex in Layer(i) is equal to i.

3

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

990