
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures: Universal Hashing

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?

A set S of keys from a universe U = {0, 1, ...,m − 1} is
supposed to be stored in a table of size n with indices
T = {0, 1, ..., n − 1}.

Assume collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the
following main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?

A set S of keys from a universe U = {0, 1, ...,m − 1} is
supposed to be stored in a table of size n with indices
T = {0, 1, ..., n − 1}.

Assume collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the
following main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
Claim 1: If m > n, then for any h there exists a key set S such
that h has collision w.r.t. S (i.e., ∃x , y ∈ S , h(x) = h(y))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?

A set S of keys from a universe U = {0, 1, ...,m − 1} is
supposed to be stored in a table of size n with indices
T = {0, 1, ..., n − 1}.

Assume collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the
following main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
Claim 1: If m > n, then for any h there exists a key set S such
that h has collision w.r.t. S (i.e., ∃x , y ∈ S , h(x) = h(y))

Claim 1.1: Any fixed hash function h : U → T , must map at
least dmn e elements of U to some index in the set T .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?

A set S of keys from a universe U = {0, 1, ...,m − 1} is
supposed to be stored in a table of size n with indices
T = {0, 1, ..., n − 1}.

Assume collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the
following main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
Claim 1: If m > n, then for any h there exists a key set S such
that h has collision w.r.t. S (i.e., ∃x , y ∈ S , h(x) = h(y))

Claim 2: For any fixed key set S such that |S | ≤ n, there
exists a hash function such that h has no collisions w.r.t. S .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?
A set S of keys from a universe U = {0, 1, ...,m − 1} is
supposed to be stored in a table of size n with indices
T = {0, 1, ..., n − 1}.

Collisions are resolved using auxiliary data structure.
What we need is a hash function h : U → T with the
following main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
Claim 1: If m > n, then for any h there exists a key set S such
that h has collision w.r.t. S (i.e., ∃x , y ∈ S , h(x) = h(y))
Claim 2: For any fixed key set S such that |S | ≤ n, there
exists a hash function such that h has no collisions w.r.t. S .
The issue is that the key set S is not known a-priori. That is,
before using the data structure.
Question: How do we solve this problem then?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?
A set S of keys from a universe U = {0, 1, ...,m − 1} is supposed
to be stored in a table of size n with indices T = {0, 1, ..., n− 1}.

Collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the following
main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
Claim 1: If m > n, then for any h there exists a key set S such
that h has collision w.r.t. S (i.e., ∃x , y ∈ S , h(x) = h(y))
Claim 2: For any fixed key set S such that |S | ≤ n, there exists a
hash function such that h has no collisions w.r.t. S .
The issue is that the key set S is not known a-priori. That is,
before using the data structure.
Question: How do we solve this problem then?

Randomly select a hash function from a family H of hash functions.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

How do we design a good hash function?
A set S of keys from a universe U = {0, 1, ...,m − 1} is supposed
to be stored in a table of size n with indices T = {0, 1, ..., n− 1}.

Collisions are resolved using auxiliary data structure.

What we need is a hash function h : U → T with the following
main requirements:

1 The hash function should minimize the number of collisions.
2 The space used should be proportional to the number of keys

stored. (i.e., n ≈ |S |)
The issue is that the key set S is not known a-priori. That is,
before using the data structure.
Question: How do we solve this problem then?

Randomly select a hash function from a family H of hash functions.

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

∀x , y ∈ U, x 6= y ,Prh←H [h(x) = h(y)] ≤ 1

n
.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

∀x , y ∈ U, x 6= y ,Prh←H [h(x) = h(y)] ≤ 1

n
.

Theorem: Consider hashing using a 2-universal hash function
family. Consider t insert operations, the expected cost of each
operation is at most (1 + t/n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

∀x , y ∈ U, x 6= y ,Prh←H [h(x) = h(y)] ≤ 1

n
.

Theorem: Consider hashing using a 2-universal hash function
family. Consider t insert operations, the expected cost of each
operation is at most (1 + t/n).

Proof sketch: Consider any key x . The expected number of keys in
location h(x) is at most t/n.

Question: Can you think of a 2-universal hash function family?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

∀x , y ∈ U, x 6= y ,Prh←H [h(x) = h(y)] ≤ 1

n
.

Theorem: Consider hashing using a 2-universal hash function
family. Consider t insert operations, the expected cost of each
operation is at most (1 + t/n).

Proof sketch: Consider any key x . The expected number of keys in
location h(x) is at most t/n.

Question: Can you think of a 2-universal hash function family?

Simple answer: The set of all functions from U to T .
Do you see any issues with using this hash function family?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

