COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

Data Structures: Universal Hashing

< ≣ >

∢母▶ ∢≣▶

э

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}.$
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - 2 The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)

伺下 イヨト イヨト

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}.$
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function h : U → T with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - **2** The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)

伺下 イヨト イヨト

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}.$
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - **2** The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
 - <u>Claim 1.1</u>: Any fixed hash function $h: U \to T$, must map at least $\lceil \frac{m}{n} \rceil$ elements of U to some index in the set T.

・吊り ・ラト ・ラト

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}.$
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - 2 The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- <u>Claim 2</u>: For any fixed key set S such that |S| ≤ n, there exists a hash function such that h has no collisions w.r.t. S.

(4月) (1日) (日)

Data Structures Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}.$
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - 2 The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- Claim 2: For any fixed key set S such that |S| ≤ n, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?

Data Structures Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function h : U → T with the following main requirements:
 - The hash function should minimize the number of collisions.
 - **2** The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- Claim 2: For any fixed key set S such that |S| ≤ n, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
 - Randomly select a hash function from a family H of hash functions.

4 B 6 4 B

Data Structures Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
 - In the hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., n ≈ |S|)
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
 - Randomly select a hash function from a family *H* of hash functions.

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}$$

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

• <u>Theorem</u>: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).

伺下 イヨト イヨト

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- <u>Theorem</u>: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
 - <u>Proof sketch</u>: Consider any key x. The expected number of keys in location h(x) is at most t/n.
- Question: Can you think of a 2-universal hash function family?

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- <u>Theorem</u>: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
 - <u>Proof sketch</u>: Consider any key x. The expected number of keys in location h(x) is at most t/n.
- Question: Can you think of a 2-universal hash function family?
 - Simple answer: The set of all functions from U to T.
 - Do you see any issues with using this hash function family?

同 ト イ ヨ ト イ ヨ

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

990