
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Hashing

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

We have seen data structures for storing and accessing entries
(key-value pairs) such that the running time for each of the
operation is:

Search: O(log n)
Insert: O(log n)
Delete: O(log n)

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity that all keys are positive
integers.

Main idea: Use an array indexed by the keys and store the
entry with key i at A[i ].

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive
integers.

Main idea: Use an array indexed by the keys and store the
entry with key i at A[i ].

Question: What is the main issue with this idea?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive
integers.

Main idea: Use an array indexed by the keys and store the
entry with key i at A[i ].

Question: What is the main issue with this idea?

Wastage of space.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive
integers.

Main idea: Use an array indexed by the keys and store the
entry with key i at A[i ].

Question: What is the main issue with this idea?

Wastage of space.

Question: How do we fix this issue?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive
integers.

Main idea: Use an array indexed by the keys and store the
entry with key i at A[i ].

Question: What is the main issue with this idea?

Wastage of space.

Question: How do we fix this issue?

Use array A[0...N − 1] and store an entry with key k at
A[h(k)], where h : K → {0, ...,N − 1}, where K denote the
space of keys.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive integers.
Main idea: Use an array indexed by the keys and store the entry
with key i at A[i ].
Question: What is the main issue with this idea?

Wastage of space.

Question: How do we fix this issue?

Use array A[0...N − 1] and store an entry with key k at A[h(k)],
where h : K → {0, ...,N − 1}, where K denote the space of keys.

Question: What is the new issue raised by the above idea?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive integers.
Main idea: Use an array indexed by the keys and store the entry
with key i at A[i ].
Question: What is the main issue with this idea?

Wastage of space.

Question: How do we fix this issue?

Use array A[0...N − 1] and store an entry with key k at A[h(k)],
where h : K → {0, ...,N − 1}, where K denote the space of keys.

Question: What is the new issue raised by the above idea?

Collision: There may exist keys i 6= j such that h(i) = h(j).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Question: Can you design a data structure with the following
running time?

Search: O(1)
Insert: O(1)
Delete: O(1)

Suppose for the sake of simplicity, all keys are positive integers.
Main idea: Use an array indexed by the keys and store the entry
with key i at A[i ].
Question: What is the main issue with this idea?

Wastage of space.

Question: How do we fix this issue?

Use array A[0...N − 1] and store an entry with key k at A[h(k)],
where h : K → {0, ...,N − 1}, where K denote the space of keys.

Question: What is the new issue raised by the above idea?

Collision: There may exist keys i 6= j such that h(i) = h(j).

Question: How do we avoid collisions (as much as possible)?
Question: How do we resolve collisions?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Main idea: Use array A[0...N − 1] and store an entry with key
k at A[h(k)], where h : K → {0, ...,N − 1}, where K denote
the space of keys.

Question 1: How do we avoid collisions (as much as possible)?

Question 2: How do we resolve collisions?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?
The nature of keys of entries may be varied depending on the
context (it may not always be positive integer as we assumed):

In case of school records, the key may be the identification number
of students.
In case of file system, it may be the file identifier.
In case of photograph storage, it may be the photos itself.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?
The nature of keys of entries may be varied depending on the
context (it may not always be positive integer as we assumed):

In case of school records, the key may be the identification number
of students.
In case of file system, it may be the file identifier.
In case of photograph storage, it may be the photos itself.

Let K denote the space of keys. K depends on the context.
It would be be good idea to first map the keys to integers. That
is a function f : K → Z.
Such a mapping from keys to integers is known as a hash code.
We will then use a mapping from the set of integers to the set
{0, ...,N − 1}. That is g : Z→ {0, ...,N − 1}.
Such a mapping is called a compression function.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?
The nature of keys of entries may be varied depending on the
context (it may not always be positive integer as we assumed):

In case of school records, the key may be the identification number
of students.
In case of file system, it may be the file identifier.
In case of photograph storage, it may be the photos itself.

Let K denote the space of keys. K depends on the context.
It would be be good idea to first map the keys to integers. That
is a function f : K → Z.
Such a mapping from keys to integers is known as a hash code.
We will then use a mapping from the set of integers to the set
{0, ...,N − 1}. That is g : Z→ {0, ...,N − 1}.
Such a mapping is called a compression function.
Given hash code f and compression function g , the hash function
h : K → {0, ...,N − 1} is given by h(k) = g(f (k)).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?
Given hash code f and compression function g , the hash function
h : K → {0, ...,N − 1} is given by h(k) = g(f (k)).

The hash code f should be such that it avoids collisions (Note
that this depends on the context).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?
The hash code f should be such that it avoids collisions (Note
that this depends on the context).
Some examples of hash codes:

Bit representation as integer: Any key will have a bit
representation (xn−1, ..., x0). Use the integer value of this bit
representation as the hash code. That is:

f (xn−1, ..., x0) =
n−1∑
i=0

xi · 2i

Sum of ASCII codes: Given that the keys are sequence of strings
sum the ASCII values of each of the characters. Can you point
some issues with this code?
Polynomial code: For a constant a 6= 0, 1 use:

f (xn−1, ..., x0) =
n−1∑
i=0

xi · ai

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as possible)?

Using carefully chosen hash functions.

The hash code f should be such that it avoids collisions (Note
that this depends on the context).
Some examples of hash codes:

Bit representation as integer
Sum of ASCII codes
Polynomial code

Some examples of compression functions:

Division method: g(i) = i mod N
MAD method: g(i) = [(ai + b)mod p]mod N for some carefully
chosen constants a, b, p.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Avoiding Collision

Question 1: How do we avoid collisions (as much as
possible)?

Using carefully chosen hash functions.

Even though we carefully chose the hash function, collisions
may still happen since the cardinality of the key space K is
usually much larger than N.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?
Suppose we are using an array A[0, ...,N − 1] and using a hash
function h.
Suppose we need to insert two keys x , y such that
h(x) = h(y) = i . As per our scheme both these keys should go to
array location A[i ]. Can you think of a way to resolve this?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?
Suppose we are using an array A[0, ...,N − 1] and using a hash
function h.
Suppose we need to insert two keys x , y such that
h(x) = h(y) = i . As per our scheme both these keys should go to
array location A[i ]. Can you think of a way to resolve this?

Create a link list of all entries that map to the same array location.
This is called separate chaining.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?
Suppose we are using an array A[0, ...,N − 1] and using a hash
function h.
Suppose we need to insert two keys x , y such that
h(x) = h(y) = i . As per our scheme both these keys should go to
array location A[i ]. Can you think of a way to resolve this?

Create a link list of all entries that map to the same array location.
This is called separate chaining.
One disadvantage of this scheme is that an auxiliary data structure
of required.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?

Separate chaining.

Suppose we are using an array A[0, ...,N − 1] and using a hash
function h. Furthermore, we would like to use only A for storage
and access.
Suppose we need to insert two keys x , y such that
h(x) = h(y) = i . As per our scheme both these keys should go to
array location A[i ]. Can you think of a way to resolve this?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?

Separate chaining.

Suppose we are using an array A[0, ...,N − 1] and using a hash
function h. Furthermore, we would like to use only A for storage
and access.
Suppose we need to insert two keys x , y such that
h(x) = h(y) = i . As per our scheme both these keys should go to
array location A[i ]. Can you think of a way to resolve this?

Insert the elements into the next available array slot.
This idea is known as open addressing.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing → Collision Handling

Question 2: How do we resolve collisions?

Separate chaining.
Open addressing:

Linear probing: The sequence of locations probed for key k are
given by A[(h(k) + i)mod N] for i = 0, 1, ...
Quadratic probing: The sequence of locations probed for key k are
given by A[(h(k) + f (i))mod N] for i = 0, 1, ..., where f is a
quadratic function such as f (i) = i2.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Hashing

Main idea: Use array A[0...N − 1] and store an entry with key k
at A[h(k)], where h : K → {0, ...,N − 1}, where K denote the
space of keys.
Question 1: How do we avoid collisions (as much as possible)?

Use a good hash function.

Question 2: How do we resolve collisions?

Separate chaining
Open addressing

Given that the number of entries in the hash table is at most n,
the load factor λ is defined as λ = n/N. N is chosen so as to
have the load factor λ < 1.
Note that if the hash function uniformly distributes the entries
into the table, then there will be dλe entries that map to each of
the table locations.
Under such favourable circumstances, the running time for all
operations will be O(1) given that λ is a constant.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


