COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Multiway Search Trees — (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:

@ Size property: Every internal node has at most 4 children.
@ Depth property: All leaves have the same depth.

@ Running time:
e Search: O(log n)
o Insert: O(log n)
o Delete: O(log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Multiway Search Trees — (2,4)-Trees

@ We can easily generalise the techniques of (2, 4)-Tree to
multiway search tree where instead of every internal node
having at least 2 and at most 4 children to multiway search
trees where every internal node have at least d and at most
2d children, where d is some constant.

@ Such trees are known by the name B-tree and are used in
modern filesystems and database implementations.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Other Balanced Search Trees

@ AVL Tree and (2, 4)-Tree are just two examples of balanced
search trees.

@ There are many more examples of such trees.

@ The book gives two other examples: red-black tree and Splay
tree.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures: B-Tree)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Binary Search Tree (BST), AVL Tree, and (2, 4)-tree are
implementations of the Abstract Data Type called Map where
key-value pairs with all distinct keys are stored and the
primary supported operations are: get (search), put (insert),
and remove (delete).

@ All the above data structures and in fact all the data
structures that we have seen (and implemented) in this class
until now are memory-based. Meaning, that they are stored
and accessed from primary memory.

@ Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to
design a disk-based data structure.

@ For this, we will first have to understand how the disk is
accessed.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

B-Tree

@ Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.

@ For this, we will first have to understand how the disk is accessed:

e There are slow mechanical operations involved when accessing

data in a disk storage.

There is seek time for positioning the head at the correct place

and transfer time for reading (or writing) data.

o Disk access is performed in data chunks called blocks (typically
size 4KB)

o Disk access is significantly slower than memory access.

Figure : Tracks, Sectors, and Blocks on a disk.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.

@ For this, we will first have to understand how the disk is accessed:

e There are slow mechanical operations involved when accessing
data in a disk storage.

e There is seek time for positioning the head at the correct place
and transfer time for reading (or writing) data.

e Disk access is performed in data chunks called blocks (typically
size 4KB)

e Disk access is significantly slower than memory access.

@ Question: Are BST, AVL-Tree, (2, 4)-tree appropriate for
disk-based implementation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.

@ For this, we will first have to understand how the disk is accessed:

e There are slow mechanical operations involved when accessing
data in a disk storage.

e There is seek time for positioning the head at the correct place
and transfer time for reading (or writing) data.

e Disk access is performed in data chunks called blocks (typically
size 4KB)

e Disk access is significantly slower than memory access.
@ Question: Are BST, AVL-Tree, (2, 4)-tree appropriate for
disk-based implementation?
@ Goals of disk-based implementation:

e Space usage should be linear in the size of the data.
e The number of disk accesses should be as small as possible.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Goals of disk-based implementation:
e Space usage should be linear in the size of the data.
e The number of disk accesses should be as small as possible.
@ Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
@ Can you think of a data structure that will be appropriate in this
context?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

Goals of disk-based implementation:

e Space usage should be linear in the size of the data.

e The number of disk accesses should be as small as possible.
Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).

Can you think of a data structure that will be appropriate in this

context?

Consider (d,2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d — 1) entries
(except root) and at most (2d — 1) entries. We can generalise all
operations studied for (2, 4)-tree.

o Note that d = 2 for (2, 4)-tree.
What is the height h of a (d,2d)-tree containing n entries?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Goals of disk-based implementation:
e Space usage should be linear in the size of the data.
e The number of disk accesses should be as small as possible.
@ Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
@ Can you think of a data structure that will be appropriate in this

context?

e Consider (d,2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d — 1) entries
(except root) and at most (2d — 1) entries. We can generalise all
operations studied for (2, 4)-tree.

o Note that d = 2 for (2, 4)-tree.

o What is the height h of a (d,2d)-tree containing n entries?
h = O (logy n)
@ What is the value of d we should use in the current context?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

Goals of disk-based implementation:

e Space usage should be linear in the size of the data.

e The number of disk accesses should be as small as possible.
Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).

Can you think of a data structure that will be appropriate in this
context?

Consider (d, 2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d — 1) entries
(except root) and at most (2d — 1) entries. We can generalise all
operations studied for (2, 4)-tree.

o Note that d = 2 for (2,4)-tree.
What is the height h of a (d,2d)-tree containing n entries?
h = O (logy n)
What is the value of d we should use in the current context
Typical value of m == 1000. What is the minimum number of keys
a B-Tree of height 2 can store?

? m-+1
’ 2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Let us consider an example of B-Tree where m =5 (so d = 3)

|G|/|M|\| I\LX|

LA I e[[| [D] |K| || |N| E | BEEERSECECR|RERED

@ Insert the following keys (in that order): B, Q, L, F.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Let us consider an example of B-Tree where m =5 (so d = 3)

|G|/|M|\| I\LX|

LA I e[[| [D] |K| || |N| E | BEEERSECECRIRERED

@ Insert the following keys (in that order): B, Q, L , F.
@ What is the bound on the number of disk accesses for an insert
operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Let us consider an example of B-Tree where m =5 (so d = 3)

|G|/|M|\| I\LX|

LA I e[[| [D] |K| || |N| E | BEEERSECECRIRERED

@ Insert the following keys (in that order): B, Q, L, F.

@ What is the bound on the number of disk accesses for an insert
operation? O(log, n)

@ What is the CPU-time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

@ Let us consider an example of B-Tree where m =5 (so d = 3)

|G|/|M|\| I\LX|

LA I e[[| [D] |K| || |N| E | BEEERSECECR|RERED

@ Insert the following keys (in that order): B, Q, L , F.

@ What is the bound on the number of disk accesses for an insert
operation? O(log, n)

e What is the CPU-time? O(d log, n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

o Let us consider an example of B-Tree where m =5 (so d = 3)

lelyfs] Nu
BERER RERCRGE RO RCN REREN RENERERNERENEERE

@ Delete the following keys (in that order): F, M, G

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
B-Tree

o Let us consider an example of B-Tree where m =5 (so d = 3)

lelyfo] Nu
BERER RERCAGE RO ECN REREN RENERERNERERERE

@ Delete the following keys (in that order): F, M, G
@ What is the bound on the number of disk accesses for a delete

operation? O(log, n)
@ What is the CPU-time? O(d log, n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Multiway Search Trees — (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:

@ Size property: Every internal node has at most 4 children.
@ Depth property: All leaves have the same depth.

@ Running time:
e Search: O(log n)
o Insert: O(log n)
o Delete: O(log n)
o Exercise 1: Insert the following sequence of keys into an initially
empty (2,4)-tree: 5,16,22,45 2 10,18,30,50,12,1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Multiway Search Trees — (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:
@ Size property: Every internal node has at most 4 children.
@ Depth property: All leaves have the same depth.

@ Running time:
e Search: O(log n)
o Insert: O(log n)
o Delete: O(logn)
o Exercise 1: Insert the following sequence of keys into an initially
empty (2,4)-tree: 5,16,22,45 2,10, 18,30, 50,12, 1.
o Exercise 2: Delete keys 45,18, 12 (in that order) from the tree
obtained in Exercise 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

