
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Multiway Search Trees → (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:

1 Size property: Every internal node has at most 4 children.
2 Depth property: All leaves have the same depth.

Running time:

Search: O(log n)
Insert: O(log n)
Delete: O(log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Multiway Search Trees → (2,4)-Trees

We can easily generalise the techniques of (2, 4)-Tree to
multiway search tree where instead of every internal node
having at least 2 and at most 4 children to multiway search
trees where every internal node have at least d and at most
2d children, where d is some constant.

Such trees are known by the name B-tree and are used in
modern filesystems and database implementations.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Other Balanced Search Trees

AVL Tree and (2, 4)-Tree are just two examples of balanced
search trees.

There are many more examples of such trees.

The book gives two other examples: red-black tree and Splay
tree.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: B-Tree

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Binary Search Tree (BST), AVL Tree, and (2, 4)-tree are
implementations of the Abstract Data Type called Map where
key-value pairs with all distinct keys are stored and the
primary supported operations are: get (search), put (insert),
and remove (delete).

All the above data structures and in fact all the data
structures that we have seen (and implemented) in this class
until now are memory-based. Meaning, that they are stored
and accessed from primary memory.

Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to
design a disk-based data structure.

For this, we will first have to understand how the disk is
accessed.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.
For this, we will first have to understand how the disk is accessed:

There are slow mechanical operations involved when accessing
data in a disk storage.
There is seek time for positioning the head at the correct place
and transfer time for reading (or writing) data.
Disk access is performed in data chunks called blocks (typically
size 4KB)
Disk access is significantly slower than memory access.

Figure : Tracks, Sectors, and Blocks on a disk.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.
For this, we will first have to understand how the disk is accessed:

There are slow mechanical operations involved when accessing
data in a disk storage.
There is seek time for positioning the head at the correct place
and transfer time for reading (or writing) data.
Disk access is performed in data chunks called blocks (typically
size 4KB)
Disk access is significantly slower than memory access.

Question: Are BST, AVL-Tree, (2, 4)-tree appropriate for
disk-based implementation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Suppose the data is so large that it does not make sense to
implement a memory-based data structure and we have to design
a disk-based data structure.
For this, we will first have to understand how the disk is accessed:

There are slow mechanical operations involved when accessing
data in a disk storage.
There is seek time for positioning the head at the correct place
and transfer time for reading (or writing) data.
Disk access is performed in data chunks called blocks (typically
size 4KB)
Disk access is significantly slower than memory access.

Question: Are BST, AVL-Tree, (2, 4)-tree appropriate for
disk-based implementation?
Goals of disk-based implementation:

Space usage should be linear in the size of the data.
The number of disk accesses should be as small as possible.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Goals of disk-based implementation:

Space usage should be linear in the size of the data.
The number of disk accesses should be as small as possible.

Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
Can you think of a data structure that will be appropriate in this
context?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Goals of disk-based implementation:

Space usage should be linear in the size of the data.
The number of disk accesses should be as small as possible.

Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
Can you think of a data structure that will be appropriate in this
context?
Consider (d , 2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d − 1) entries
(except root) and at most (2d − 1) entries. We can generalise all
operations studied for (2, 4)-tree.

Note that d = 2 for (2, 4)-tree.

What is the height h of a (d , 2d)-tree containing n entries?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Goals of disk-based implementation:

Space usage should be linear in the size of the data.
The number of disk accesses should be as small as possible.

Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
Can you think of a data structure that will be appropriate in this
context?
Consider (d , 2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d − 1) entries
(except root) and at most (2d − 1) entries. We can generalise all
operations studied for (2, 4)-tree.

Note that d = 2 for (2, 4)-tree.

What is the height h of a (d , 2d)-tree containing n entries?
h = O (logd n)
What is the value of d we should use in the current context?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Goals of disk-based implementation:

Space usage should be linear in the size of the data.
The number of disk accesses should be as small as possible.

Suppose a disk block can store m key-value pairs (in addition to
m + 1 pointers).
Can you think of a data structure that will be appropriate in this
context?
Consider (d , 2d)-Tree which is a generalisation of (2, 4)-tree
where each internal node should hold at least (d − 1) entries
(except root) and at most (2d − 1) entries. We can generalise all
operations studied for (2, 4)-tree.

Note that d = 2 for (2, 4)-tree.

What is the height h of a (d , 2d)-tree containing n entries?
h = O (logd n)
What is the value of d we should use in the current context? m+1

2
Typical value of m ≈ 1000. What is the minimum number of keys
a B-Tree of height 2 can store?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Insert the following keys (in that order): B, Q, L , F.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Insert the following keys (in that order): B, Q, L , F.
What is the bound on the number of disk accesses for an insert
operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Insert the following keys (in that order): B, Q, L , F.
What is the bound on the number of disk accesses for an insert
operation? O(logd n)
What is the CPU-time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Insert the following keys (in that order): B, Q, L , F.
What is the bound on the number of disk accesses for an insert
operation? O(logd n)
What is the CPU-time? O(d logd n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Delete the following keys (in that order): F, M, G

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
B-Tree

Let us consider an example of B-Tree where m = 5 (so d = 3)

Delete the following keys (in that order): F, M, G
What is the bound on the number of disk accesses for a delete
operation? O(logd n)
What is the CPU-time? O(d logd n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Multiway Search Trees → (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:

1 Size property: Every internal node has at most 4 children.
2 Depth property: All leaves have the same depth.

Running time:

Search: O(log n)
Insert: O(log n)
Delete: O(log n)

Exercise 1: Insert the following sequence of keys into an initially
empty (2, 4)-tree: 5, 16, 22, 45, 2, 10, 18, 30, 50, 12, 1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Multiway Search Trees → (2,4)-Trees

Definition ((2-4)-Tree)

A (2, 4)-Tree is a multiway search tree with the following two
additional properties:

1 Size property: Every internal node has at most 4 children.
2 Depth property: All leaves have the same depth.

Running time:

Search: O(log n)
Insert: O(log n)
Delete: O(log n)

Exercise 1: Insert the following sequence of keys into an initially
empty (2, 4)-tree: 5, 16, 22, 45, 2, 10, 18, 30, 50, 12, 1.
Exercise 2: Delete keys 45, 18, 12 (in that order) from the tree
obtained in Exercise 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


