
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Balanced Binary Search Trees

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}
public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Question: How do we perform get(k) operation on an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Question: How do we perform get(k) operation on an AVL tree?
The same as BST

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children di↵er by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Question: How do we perform put(k, v) operation on an AVL
tree?

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : Suppose the insertion happens in the right sub-tree of node labeled
x .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : Suppose the insertion happens in T3 and x , y , z are as defined in
the pseudocode.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : Suppose the insertion happens in T3 and x , y , z are as defined in
the pseudocode.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : Suppose the insertion happens in T3 and x , y , z are as defined in
the pseudocode. For some h the height of the nodes before insertion will be
as shown above.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : The height of the nodes after inserting the new node are as shown
above.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Figure : The height of the nodes after inserting and performing tri-node
restructuring.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Question: How do we perform remove(k) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
deletion, the height balance property is maintained.
Consider deleting the entry with key 20 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Question: How do we perform remove(k) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
deletion, the height balance property is maintained.
Consider deleting the entry with key 20 in the Tree below.

Figure : The tree needs to be balanced.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Question: How do we perform remove(k) operation on an AVL
tree?

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : The tree needs to be balanced.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : Suppose a node is deleted from T1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : Suppose a node is deleted from T1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : Suppose a node is deleted from T1. One possible scenario for
heights before deletion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : Suppose a node is deleted from T1. Heights after deletion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees ! AVL Trees

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove(Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:

If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z .

- Perform Tri-node restructuring w.r.t. x , y , z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.

- If b is not the root, then BalanceAfterRemove(b.parent)

Figure : Suppose a node is deleted from T1. Heights after tri-node
restructuring.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


