
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Balanced Binary Search Trees

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}
public class BST{

public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k):
put(k, v):
remove(k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k): O(n)
put(k, v): O(n)
remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k):
put(k, v):
remove(k):

A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k): O(log n)
put(k, v): O(log n)
remove(k): O(log n)

So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Rotation for tree balancing.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies
the following property:
Height balance property: For every internal node of the tree,
the heights of its children differ by at most 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Claim: The height of any AVL tree storing n nodes is O(log n).

Let n(h) denote the minimum number of internal nodes in an AVL
tree with height h.
Try writing a recurrence relation for n(h) and solving it to get a
lower bound.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Question: How do we perform get(k) operation on an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Question: How do we perform get(k) operation on an AVL tree?
The same as BST

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Question: How do we perform put(k, v) operation on an AVL
tree?

Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

Question: How do we perform put(k, v) operation on an AVL
tree?

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)

- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)

- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut(Node p)

- While going up from p, let z denote the first node for which
the height balance property is not satisfied.

- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x , y , z .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


