COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Balanced Binary Search Trees )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Binary Search Trees

o Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

}

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}

public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
o get(k):
e put(k, v):
e remove (k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
e get(k): O(n)
e put(k, v): O(n)
e remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?
o get(k):
e put(k, v):
e remove (k):
e A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?

o get(k): O(logn)
e put(k, v): O(logn)
e remove(k): O(logn)
@ So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

@ This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

@ This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Rotation for tree balancing.

Rotation

—

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies
the following property:
Height balance property: For every internal node of the tree,
the heights of its children differ by at most 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the

heights of its children differ by at most 1.
e Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Claim: The height of any AVL tree storing n nodes is O(log n).
e Let n(h) denote the minimum number of internal nodes in an AVL
tree with height h.
e Try writing a recurrence relation for n(h) and solving it to get a
lower bound.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:

Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform get (k) operation on an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform get (k) operation on an AVL tree?
The same as BST

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform put(k, v) operation on an AVL
tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

o AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform put (k, v) operation on an AVL
tree?

e Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
o Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform put (k, v) operation on an AVL
tree?

e Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
e Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ Question: How do we perform put(k, v) operation on an AVL
tree?

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



