
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Heaps and Priority Queues

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

What is the running time of each of these operations in the
array based implementation of Min-Heap?

insert(k, v):
min():
removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

What is the running time of each of these operations in the
array based implementation of Min-Heap?

insert(k, v): O(log n)
min(): O(1)
removeMin(): O(log n)

Problem

Given n entries create a min-heap of these entries.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations.

What is the running time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations.

What is the running time? O(n log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.

Method 2: Bottom-up heap construction

Question: Suppose we have a min-heap H1 and H2 both
containing 2h − 1 entries and an entry E . Can you construct a
min-heap for all entries in H1,H2 and E combined? What is
the running time for your combination algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Suppose this construction is performed on an array with
n = 2h+1 − 1 entries. What is the running time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Suppose this construction is performed on an array with
n = 2h+1 − 1 entries. What is the running time?
Claim: The worst case running time is given by the expression:

F (h) = 2h−1 · 1 + 2h−2 · 2 + ... + 2h−h · h

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Suppose this construction is performed on an array with
n = 2h+1 − 1 entries. What is the running time?
Claim: The worst case running time is given by the expression:

F (h) = 2h−1 · 1 + 2h−2 · 2 + ... + 2h−h · h

How do we simplify the above expression?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Suppose this construction is performed on an array with
n = 2h+1 − 1 entries. What is the running time?
Claim: The worst case running time is given by the expression:

F (h) = 2h−1 · 1 + 2h−2 · 2 + ... + 2h−h · h

We can write:

F (h) =
h−1∑
i=0

2i +
h−2∑
i=0

2i + ... +
0∑

i=0

2i

= (2h − 1) + (2h−1 − 1) + ... + (21 − 1)

=
h∑

i=1

2i − h

= 2h+1 − 2− h

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction

Suppose this construction is performed on an array with
n = 2h+1 − 1 entries. What is the running time?
Claim: The worst case running time is given by the expression:

F (h) = 2h−1 · 1 + 2h−2 · 2 + ... + 2h−h · h

We can write:

F (h) =
h−1∑
i=0

2i +
h−2∑
i=0

2i + ... +
0∑

i=0

2i

= (2h − 1) + (2h−1 − 1) + ... + (21 − 1)

=
h∑

i=1

2i − h

= 2h+1 − 2− h ≤ 2h+1 − 1 = n

So, the running time of bottom-up heap construction is O(n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction in O(n) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.

Method 2: Bottom-up heap construction in O(n) time.

Question: Suppose you are given an unsorted array, can you
use min-heap to sort the elements of the array?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.

Method 2: Bottom-up heap construction in O(n) time.

Question: Suppose you are given an unsorted array, can you
use min-heap to sort the elements of the array?

Algorithm

HeapSort(A, n)
- Perform bottom-up heap construction on the array A

and let H denote the heap
- for i = 1 to n

- B[i ]← H.removeMin()
- return(B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction in O(n) time.
Question: Suppose you are given an unsorted array, can you use
min-heap to sort the elements of the array?

Algorithm

HeapSort(A, n)
- Perform bottom-up heap construction on the array A

and let H denote the heap
- for i = 1 to n

- B[i ]← H.removeMin()
- return(B)

The above algorithm is called Heap Sort. What is the running
time of this algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

Method 1: Perform n insert operations in O(n log n) time.
Method 2: Bottom-up heap construction in O(n) time.
Question: Suppose you are given an unsorted array, can you use
min-heap to sort the elements of the array?

Algorithm

HeapSort(A, n)
- Perform bottom-up heap construction on the array A

and let H denote the heap
- for i = 1 to n

- B[i ]← H.removeMin()
- return(B)

The above algorithm is called Heap Sort. What is the running
time of this algorithm? O(n log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Binary Search Trees

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Consider an array based implementation where the elements
are NOT sorted based on the keys. What is the running time
of:

get(k):
put(k, v):
remove(k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Consider an array based implementation where the elements
are NOT sorted based on the keys. What is the running time
of:

get(k): O(n)
put(k, v): O(n)
remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Consider an array based implementation where the elements
are sorted based on the keys. What is the running time of:

get(k):
put(k, v):
remove(k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Consider an array based implementation where the elements
are sorted based on the keys. What is the running time of:

get(k): O(log n)
put(k, v): O(n)
remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

We would like to perform the following operations:

get(k): Search an entry with key k and return the value.
put(k, v): Associate value v with key k , replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.
remove(k): Delete an entry with key k .

Our next goal is to build a data structure where the running
time of the operations are:

get(k): O(log n)
put(k, v): O(log n)
remove(k): O(log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary
trees such that each internal node p stores a key-value pair
such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Is the tree below a binary search tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Is the tree below a binary search tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Is the tree below a binary search tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Is the tree below a binary search tree? Yes

Figure : The “value” of entries are not shown.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform get(k)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
get(k)?

How do we search for the key 68 in the binary search tree below?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
get(k)?

Now try searching 76 in the tree.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;
}
public class BST{

public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform put(k,
v)?

Suppose we want to perform put(68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform put(k,
v)?

Suppose we want to perform put(68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform put(k,
v)?

Suppose we want to perform put(68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform put(k,
v)?

Suppose we want to perform put(68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;
}
public class BST{

public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

1 Keys stored in the left sub-tree of p are less than k
2 Keys stored in the right sub-tree of p are greater than k

Question: Given a binary search tree, how do we perform
remove(k)?

Suppose we want to perform remove(88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;
}
public class BST{

public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}
public void remove(int k){//To be written}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k):
put(k, v):
remove(k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k): O(n)
put(k, v): O(n)
remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k):
put(k, v):
remove(k):

A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k): O(log n)
put(k, v): O(log n)
remove(k): O(log n)

So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Balanced Binary Search Trees

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

Consider the following implementation:

Code

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;
}
public class BST{

public int size;
public Node root;
public BST(){

size = 0;root = null;
}
public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}
public void remove(int k){//To be written}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k):
put(k, v):
remove(k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations?

get(k): O(n)
put(k, v): O(n)
remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k):
put(k, v):
remove(k):

A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Binary Search Trees

What is the worst case running time of each of the following
operations when the BST is balanced?

get(k): O(log n)
put(k, v): O(log n)
remove(k): O(log n)

So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Suppose we start with an empty BST and insert the keys
1, 2, 3, 4, then the BST obtained is shown below.

This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Rotation for tree balancing.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

Tri-node restructuring for a node x , its parent y , and its
grandparent z .

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies
the following property:
Height balance property: For every internal node of the tree,
the heights of its children differ by at most 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Is the binary search tree below an AVL tree? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees → AVL Trees

AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


