COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures: Heaps and Priority Queues)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

@ What is the running time of each of these operations in the
array based implementation of Min-Heap?
e insert(k, v):
e min():
e removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

@ What is the running time of each of these operations in the
array based implementation of Min-Heap?

e insert(k, v): O(logn)
e min(): O(1)
e removeMin(): O(logn)

Problem
Given n entries create a min-heap of these entries.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations.
e What is the running time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations.
e What is the running time? O(nlog n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.

@ Method 2: Bottom-up heap construction
e Question: Suppose we have a min-heap H; and H, both
containing 2" — 1 entries and an entry E. Can you construct a
min-heap for all entries in H;, H, and E combined? What is
the running time for your combination algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

N,
'
Nl
P
e S
- ~
-~ S
- ~
- ~s
e S
— Sy o=
. ey k4 \
\ ! ! !
>oA, P4
RIS A~
\ % LN
e . " N
, \ % .
Lo . P .
e 7 N,
- Py Pry b
’ ’ N AN 77N
Lod Lo Lol o
) 2) SRR s i
AY ’ \ 4 AY 4 Ay
’ AY ! AN ’ AY ’ AY
/ N K \ K N\ K \
o o o et TS - -t ot
27N 7N 27N 2N 27N, 7N TN, 77N
| 1 1 1 {] {] I N ! [| H H 1
N N’ e oo Ny RN P

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

.
Ao
-5
-7 S
-7 S
- ~
- <
-~ Ss
- ~
-~ Seo-
- -~
{ X " M
1
\ } \ 1
RIS ~aX,
R \ 0 N
s RS e AN
a a .
,/' AN pd N,
<, B < s
N PN 5N 77N
{ i { 1 | [
\] \), \] L 1
) SN) SN A ek
I Y I N ’ \] N\

I
1

N, A ’ AY AY
i/ AN AN / \ J \
I : @ @ ‘@ : \‘

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

- S, 4

\, N\
// AN a4 AN
%

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem

Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

- S, 4

\, N\
// AN a4 AN
%

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction
e Suppose this construction is performed on an array with
n =21 _ 1 entries. What is the running time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction
e Suppose this construction is performed on an array with
n =21 _ 1 entries. What is the running time?
e Claim: The worst case running time is given by the expression:

F(hy=2h"1.142M2.24 . 420 h.p

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction
e Suppose this construction is performed on an array with
n =21 _ 1 entries. What is the running time?
e Claim: The worst case running time is given by the expression:

F(hy=2h"1.142M2.24 . 42 h.p

e How do we simplify the above expression?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction

e Suppose this construction is performed on an array with
n =21 _1 entries. What is the running time?
e Claim: The worst case running time is given by the expression:
F(hy=2""1.142m2.204 y2h=h.p

o We can write:

h—1 h—2 0
F(hy = > 2043y 2 +..+) 2

i=0 i=0 i=0

= 2"-1)+0" -+ 402 -1)
h

= > 2 —h
i=1

— 2h+1 —_2_h

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction
o Suppose this construction is performed on an array with
n =21 _ 1 entries. What is the running time?
e Claim: The worst case running time is given by the expression:

F(hy=2M1. 142224 42mh.p

o We can write:

h—1

h—2 0
DIV
i=0 0 i=0

i=l

F(h)

= 2"-D+T-D) .+ (2E-1)
h

= > 2-h
i=1

_ 2h+172ihg2h+171:n

e So, the running time of bottom-up heap construction is O(n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Heaps and Priority Queues

Problem
Given n entries create a min-heap of these entries.

e Method 1: Perform n insert operations in O(nlog n) time.
@ Method 2: Bottom-up heap construction in O(n) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues
Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.

@ Method 2: Bottom-up heap construction in O(n) time.

@ Question: Suppose you are given an unsorted array, can you
use min-heap to sort the elements of the array?

Ragesh Jaiswal, [IT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues
Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.

@ Method 2: Bottom-up heap construction in O(n) time.

@ Question: Suppose you are given an unsorted array, can you
use min-heap to sort the elements of the array?

HeapSort (A, n)
- Perform bottom-up heap construction on the array A
and let H denote the heap
-fori=1ton
- B[i] <~ H.removeMin()
- return(B)

v

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues
Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.

@ Method 2: Bottom-up heap construction in O(n) time.

@ Question: Suppose you are given an unsorted array, can you use
min-heap to sort the elements of the array?

Algorithm

HeapSort (A, n)
- Perform bottom-up heap construction on the array A
and let H denote the heap
-fori=1ton
- B[i] + H.removeMin()
- return(B)

@ The above algorithm is called Heap Sort. What is the running
time of this algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Heaps and Priority Queues
Problem
Given n entries create a min-heap of these entries.

@ Method 1: Perform n insert operations in O(nlog n) time.

@ Method 2: Bottom-up heap construction in O(n) time.

@ Question: Suppose you are given an unsorted array, can you use
min-heap to sort the elements of the array?

Algorithm

HeapSort (A, n)
- Perform bottom-up heap construction on the array A
and let H denote the heap
-fori=1ton
- B[i] + H.removeMin()
- return(B)

@ The above algorithm is called Heap Sort. What is the running
time of this algorithm? O(nlog n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures: Binary Search Trees)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k,v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k, v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

o Consider an array based implementation where the elements
are NOT sorted based on the keys. What is the running time
of:

o get(k):
e put(k,v):
e remove (k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k, v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

o Consider an array based implementation where the elements
are NOT sorted based on the keys. What is the running time
of:

o get(k): O(n)
e put(k,v): O(n)
e remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k,v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

o Consider an array based implementation where the elements
are sorted based on the keys. What is the running time of:
o get(k):
e put(k,v):
e remove (k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k,v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

o Consider an array based implementation where the elements
are sorted based on the keys. What is the running time of:
o get(k): O(logn)
e put(k,v): O(n)
e remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Suppose we want to store n data entries where each data
entry consist of a key (this can be thought of as a unique
integer ID) and a value.

@ We would like to perform the following operations:

e get(k): Search an entry with key k and return the value.

e put(k,v): Associate value v with key k, replacing and
returning any existing value in case an entry with key k exists
or inserting a new entry if no entry with key k exists.

e remove (k): Delete an entry with key k.

@ Our next goal is to build a data structure where the running
time of the operations are:
o get(k): O(logn)
e put(k,v): O(logn)
e remove(k): O(logn)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary
trees such that each internal node p stores a key-value pair
such that:

@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

@ Is the tree below a binary search tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

@ Is the tree below a binary search tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

@ Is the tree below a binary search tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:

@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

@ Is the tree below a binary search tree? Yes

Figure : The “value" of entries are not shown.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k

@ Question: Given a binary search tree, how do we perform get (k)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
get(k)?
o How do we search for the key 68 in the binary search tree below?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
get(k)?
o Now try searching 76 in the tree.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

}

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform put (k,
v)?
o Suppose we want to perform put (68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform put (k,
v)?
o Suppose we want to perform put (68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform put (k,
v)?
o Suppose we want to perform put (68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform put (k,
v)?
o Suppose we want to perform put (68, "A") in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}
public void put(int k, String v){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
e Suppose we want to perform remove (32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
e Suppose we want to perform remove (32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
e Suppose we want to perform remove (32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
e Suppose we want to perform remove (32) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

@ Binary Search Tree: Binary Search Trees are proper binary trees
such that each internal node p stores a key-value pair such that:
@ Keys stored in the left sub-tree of p are less than k
@ Keys stored in the right sub-tree of p are greater than k
@ Question: Given a binary search tree, how do we perform
remove (k)?
o Suppose we want to perform remove (88) in the BST below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

o Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

}

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}

public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
o get(k):
e put(k, v):
e remove (k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
e get(k): O(n)
e put(k, v): O(n)
e remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?
o get(k):
e put(k, v):
e remove (k):
e A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?

o get(k): O(logn)
e put(k, v): O(logn)
e remove(k): O(logn)
@ So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures: Balanced Binary Search Trees)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures

Binary Search Trees

o Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

}

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}

public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
o get(k):
e put(k, v):
e remove (k):

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations?
e get(k): O(n)
e put(k, v): O(n)
e remove(k): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?
o get(k):
e put(k, v):
e remove (k):
e A BST is perfectly balanced if for every internal node, there
are equal number of nodes in its left and right sub-trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Binary Search Trees

@ What is the worst case running time of each of the following
operations when the BST is balanced?

o get(k): O(logn)
e put(k, v): O(logn)
e remove(k): O(logn)
@ So, our next goal shall be to build balanced binary search
trees.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

@ This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Suppose we start with an empty BST and insert the keys
1,2,3,4, then the BST obtained is shown below.

@ This tree is not balanced. Can you think of a way to balance
this tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Rotation for tree balancing.

Rotation

—

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies
the following property:
Height balance property: For every internal node of the tree,
the heights of its children differ by at most 1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.
@ Is the binary search tree below an AVL tree? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the

heights of its children differ by at most 1.
e Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

