COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

э

- ● ● ●

- What is the running time of each operation in the pointer based implementation:
 - min(): O(1)
 - insert(k, v): $O(\log n)$
 - o removeMin(): O(log n)

- What is the running time of each operation in the pointer based implementation:
 - min(): O(1)
 - insert(k, v): $O(\log n)$
 - removeMin(): O(log n)
- Note that a Max-Heap can be defined in a similar manner as a Min-Heap.

- What is the running time of each operation in the pointer based implementation:
 - min(): O(1)
 - insert(k, v): $O(\log n)$
 - o removeMin(): O(log n)
- Pointer manipulations can sometimes be intricate (recall the incrementLastNode methods in the homework).
- Question: Can we implement Min-Heap using an Array?

- What is the running time of each operation in the pointer based implementation:
 - min(): O(1)
 - insert(k, v): $O(\log n)$
 - o removeMin(): O(log n)
- Pointer manipulations can sometimes be intricate (recall the incrementLastNode methods in the homework).
- Question: Can we implement Min-Heap using an Array?
 - Array elements are typically stored in contiguous locations in the memory and this has its advantages.

- Question: Can we implement Min-Heap using an Array?
- Consider the following example of a min-heap. Let us label the nodes of this complete binary tree level-wise as shown below.
- Do you observe some pattern in the labels?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

- Question: Can we implement Min-Heap using an Array?
- Consider the following example of a min-heap. Let us label the nodes of this complete binary tree level-wise as shown below.
- Do you observe some pattern in the labels?
 - <u>Claim 1</u>: Nodes of level *i* are labeled $2^i, ..., 2^{i+1} 1$.

- Question: Can we implement Min-Heap using an Array?
- Consider the following example of a min-heap. Let us label the nodes of this complete binary tree level-wise as shown below.
- Do you observe some pattern in the labels?
 - Claim 1: Nodes of level i are labeled $2^i, ..., 2^{i+1} 1$.
 - <u>Claim 2</u>: For every node labeled *i*, the label of it children (if they exist) are _____ and _____ and the label of its parent is _____.

-

- Question: Can we implement Min-Heap using an Array?
- Consider the following example of a min-heap. Let us label the nodes of this complete binary tree level-wise as shown below.
- Do you observe some pattern in the labels?
 - Claim 1: Nodes of level i are labeled $2^i, ..., 2^{i+1} 1$.
 - <u>Claim 2</u>: For every node labeled *i*, the label of it children (if they exist) are 2*i* and (2*i* + 1) and the label of its parent is |*i*/2|.

- Question: Can we implement Min-Heap using an Array?
- Consider the following example of a min-heap. Let us label the nodes of this complete binary tree level-wise as shown below.
- Do you observe some pattern in the labels?
 - Claim 1: Nodes of level i are labeled $2^i, ..., 2^{i+1} 1$.
 - <u>Claim 2</u>: For every node labeled *i*, the label of it children (if they exist) are 2*i* and (2*i* + 1) and the label of its parent is $\lfloor i/2 \rfloor$.
- Main idea: Store node labeled *i* at index *i* of the array.

・ロト ・ 一 ・ ・ 三 ト ・ 三 ト ・

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, *T*).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes?

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, T).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes? array index (*size* + 1)

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, T).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes? array index (*size* + 1)
 - How do we perform up-heap bubbling in the array?

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, T).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes? array index (*size* + 1)
 - How do we perform *up-heap bubbling* in the array?

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, T).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes? array index (*size* + 1)
 - How do we perform *up-heap bubbling* in the array?

- Question: Can we implement Min-Heap using an Array?
- Let size = 13 denote the current size of the heap. Suppose we want to insert (2, T).
 - Which array location should we put this entry in order to maintain a complete binary tree with (*size* + 1) nodes? array index (*size* + 1)
 - How do we perform up-heap bubbling in the array?

• Consider an array based implementation of min-heap.

Implementation
class Entry{
public int key;
public String value;
<pre>public Entry(int k, String v){</pre>
key = k;
value = v;
}
}
public class MinHeapArray{
final int MAX_HEAP_SIZE = 1000;
public Entry[] A;
public int size;
public MinHeapArray(){
size $= 0;$
$A = new Entry[MAX_HEAP_SIZE];$
}
<pre>public void upHeapBubble(int i){//To be written}</pre>
<pre>public void downHeapBubble(int i){//To be written}</pre>
<pre>public String min(){//To be written}</pre>
<pre>public void insert(int k, String v){//To be written}</pre>
<pre>public String removeMin(){//To be written}</pre>
}

문에서 문어야.

< 一型 →

э

- What is the running time of each of these operations in the array based implementation of Min-Heap?
 - insert(k, v):
 - min():
 - removeMin():

- What is the running time of each of these operations in the array based implementation of Min-Heap?
 - insert(k, v): $O(\log n)$
 - min(): O(1)
 - removeMin(): $O(\log n)$

Given n entries create a min-heap of these entries.

Given n entries create a min-heap of these entries.

- <u>Method 1</u>: Perform *n* insert operations.
 - What is the running time?

AP ► < E ►

Given n entries create a min-heap of these entries.

- <u>Method 1</u>: Perform *n* insert operations.
 - What is the running time? $O(n \log n)$

AP ► < E ►

Given n entries create a min-heap of these entries.

- <u>Method 1</u>: Perform *n* insert operations in $O(n \log n)$ time.
- <u>Method 2</u>: Bottom-up heap construction
 - <u>Question</u>: Suppose we have a min-heap H₁ and H₂ both containing 2^h 1 entries and an entry E. Can you construct a min-heap for all entries in H₁, H₂ and E combined? What is the running time for your combination algorithm?

< 同 > < 回 > < 回 >

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

< E

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

< E

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

-∢ ≣ →

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

-∢ ≣ ≯

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

-∢ ≣ ≯

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

□ > < = > <

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Problem

Given n entries create a min-heap of these entries.

- Method 1: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction

Given n entries create a min-heap of these entries.

- <u>Method 1</u>: Perform *n* insert operations in $O(n \log n)$ time.
- Method 2: Bottom-up heap construction
 - Suppose this construction is performed on an array with $n = 2^{h+1} 1$ entries. What is the running time?

向下 イヨト イヨト

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ