COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

- Can you implement a stack using an array? What is the running time for each operation?
- Can you implement a stack using a queue? What is the running time for each operation?
- Can you implement a queue using a stack?
- Can you implement a queue using two stacks? What is the running time for each operation?

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

Dequeue()

- If (A and B are empty)
 - return(null)
- If (B is not empty)
 - return(Pop_B())
- while(A is not empty)
 - $Push_B(Pop_A())$
- return($Pop_B()$)

Problem

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

- Dequeue()
 - If (A and B are empty)
 return(null)
 - If (B is not empty)
 return(Pop_B())
 - while(A is not empty)
 Push_B(Pop_A())
 - return(Pop_B())
 - What is the running time of each of the basic operations:
 - Enqueue(e):
 - Dequeue():

- 4 同 ト - 4 目 ト

Problem

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

Dequeue()
- If (A and B are empty)
 - return(null)
- If (B is not empty)
 - return(Pop_B())
- while(A is not empty)
 - Push_B(Pop_A())
- return(Pop_B())

- What is the running time of each of the basic operations:
 - Enqueue(*e*): *O*(1)
 - Dequeue(): O(n)

- 4 同 ト - 4 目 ト

$\begin{array}{l} \textbf{Data Structures} \\ \textbf{Digression: Queue and Stack} \rightarrow \textbf{Amortized Analysis} \end{array}$

Problem

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

Dequeue()

- If (A and B are empty)
 - return(*null*)
- If (B is not empty)
 - return(Pop_B())
- while(A is not empty)
 - Push_B(Pop_A())
- return(Pop_B())
- What is the running time of each of the basic operations:
 - Enqueue(e): O(1)
 - Dequeue(): O(n)
- <u>Comment</u>: It is very pessimistic to say that the running time of the Dequeue() operation is O(n) (even though correct).
- Is there a better way to analyse the running time in such scenarios where an operation is costly only sometimes?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

$\begin{array}{l} \textbf{Data Structures} \\ \textbf{Digression: Queue and Stack} \rightarrow \textbf{Amortized Analysis} \end{array}$

Problem

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

Dequeue()

- If (A and B are empty)
 - return(null)
- If (B is not empty)
 - return(Pop_B())
- while(A is not empty)
 - Push_B(Pop_A())
- return($Pop_B()$)
- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When B is empty, then one has to pop all elements from A and push them into B. This would take O(|A|) time.

伺 ト イヨト イヨト

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.

伺下 イヨト イヨト

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- We can compute the total cost by considering the cost per element of the queue and then sum over all elements.

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- We can compute the total cost by considering the cost per element of the queue and then sum over all elements.
- What is the cost associated with each element?
 - **1** The element is pushed into Stack A.
 - Phe element (at some point of time) needs to be moved from Stack A to Stack B.
 - **③** The element is finally popped out from *B*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- We can compute the total cost by considering the cost per element of the queue and then sum over all elements.
- What is the cost associated with each element? 4 operations
 - **1** The element is pushed into Stack *A*. This costs 1 operation.
 - Phe element (at some point of time) needs to be moved from Stack A to Stack B. This costs 2 operations.
 - **③** The element is finally popped out from B. This costs 1 operation.

(4 同) (4 回) (4 回)

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- We can compute the total cost by considering the cost per element of the queue and then sum over all elements.
- What is the cost of dequeue associated with each element? 4 operations
 - **1** The element is pushed into Stack *A*. This costs 1 operation.
 - Provide the element (at some point of time) needs to be moved from Stack A to Stack B. This costs 2 operations.
 - **③** The element is finally popped out from B. This costs 1 operation.
- So, O(n) operations will be performed in total over a series of n operations.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When B is empty, then one has to pop all elements from A and push them into B. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- We can compute the total cost by considering the cost per element of the queue and then sum over all elements.
- What is the cost of dequeue associated with each element? 4 operations
 - **1** The element is pushed into Stack A. This costs 1 operation.
 - Phe element (at some point of time) needs to be moved from Stack A to Stack B. This costs 2 operations.
 - \bigcirc The element is finally popped out from *B*. This costs 1 operation.
- So, O(n) operations will be performed in total over a series of n operations.
- So, the amortized running time for the operations are:
 - Enqueue(e): O(1)
 - Dequeue(): O(1)

(日) (同) (日) (日)

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Suppose a series of *n* operations are performed on the queue. What is the average running time of Dequeue() operation?
 - When B is not empty, then the operation takes O(1) times.
 - When *B* is empty, then one has to pop all elements from *A* and push them into *B*. This would take O(|A|) time. But, then the next |A| dequeue operations will take O(1) time.
- Another way of viewing this analysis is through of concept of *budgeting*.
- Here, we will argue that 4*n* coins are enough to fund *n* Queue operation where you pay one coin for every simple operation performed in the implementation (that is, on the stack(s)).

- 4 同 ト - 4 目 ト

Problem

Implement a Queue using two stacks.

- Let the two stacks be A and B.
- Enqueue(e): Push_A(e)

Algorithm

Dequeue()

- If (A and B are empty)
 - return(null)
- If (B is not empty)
 - return(Pop_B())
- while(A is not empty)
 - $Push_B(Pop_A())$
- return($Pop_B()$)
- Amortized analysis: Per-operation running time averaged over a series of operations.
- So, the amortized running time for the operations are:
 - Enqueue(e): O(1)
 - Dequeue(): O(1)

(日) (同) (三) (三)

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Let us see another example of Amortized analysis in Data Structures.
- Arrays are most basic data structures where elements can be accessed using *indices*. Contiguous memory locations are used for arrays.
- One common issue while using Arrays is that the array size is fixed once defined and if the array becomes full then there is no way to handle the overflow.

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Let us see another example of Amortized analysis in Data Structures.
- Arrays are most basic data structures where elements can be accessed using *indices*. Contiguous memory locations are used for arrays.
- One common issue while using Arrays is that the array size is fixed once defined and if the array becomes full then there is no way to handle the overflow.
- Dynamic Arrays are arrays that are resizable and allows to accommodate arbitrary number of elements.
- Such arrays are dynamic in the sense that the array "dynamically adjusts itself in case of overflows".

- Amortized analysis: Per-operation running time averaged over a series of operations.
- Let us see another example of Amortized analysis in Data Structures.
- Arrays are most basic data structures where elements can be accessed using *indices*. Contiguous memory locations are used for arrays.
- One common issue while using Arrays is that the array size is fixed once defined and if the array becomes full then there is no way to handle the overflow.
- Dynamic Arrays are arrays that are resizable and allows to accommodate arbitrary number of elements.
- Such arrays are dynamic in the sense that the array "dynamically adjusts itself in case of overflows".
- Can you implement a dynamic arrays using an regular arrays?

Implement Dynamic Arrays using regular Arrays.

- Initialisation: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array overflows, do:
 - Create an array B double the size of the current array A (i.e, |B| = 2|A|)
 - Copy all the elements of A into B
 - Rename B as A

< 同 > < 三 > < 三 >

Implement Dynamic Arrays using regular Arrays.

- Initialisation: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array overflows, do:
 - Create an array B double the size of the current array A (i.e, |B|=2|A|)
 - Copy all the elements of A into B
 - Rename B as A
- What is the running time of insert operation?

Implement Dynamic Arrays using regular Arrays.

- Initialisation: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array *overflows*, do:
 - Create an array B double the size of the current array A (i.e, |B|=2|A|)
 - Copy all the elements of A into B
 - Rename *B* as *A*
- What is the running time of insert operation? O(n)

・吊り ・ラト ・ラト

Implement Dynamic Arrays using regular Arrays.

- <u>Initialisation</u>: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array overflows, do:
 - Create an array B double the size of the current array A (i.e, |B|=2|A|)
 - Copy all the elements of A into B
 - Rename B as A
- What is the running time of insert operation? O(n)
- What is the Amortized running time of insert operation?

伺下 イラト イラ

Implement Dynamic Arrays using regular Arrays.

- <u>Initialisation</u>: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array overflows, do:
 - Create an array B double the size of the current array A (i.e, |B|=2|A|)
 - Copy all the elements of A into B
 - Rename B as A
- What is the running time of insert operation? O(n)
- What is the Amortized running time of insert operation?
 - Suppose starting from the empty array (of size 1) one performs *n* insert operation in a sequence. What is the total running time?

- 4 同 ト - 4 目 ト

- What is the Amortized running time of insert operation?
 - Suppose starting from the empty array (of size 1) one performs *n* insert operation in a sequence. What is the total running time?

#	Operation	Work done	# basic ops.
1	Insert(8)	8	1
2	Insert(5)	8 8 5	(1 + 1)
3	Insert(0)	8 5 8 5 0	(2 + 1)
4	Insert(2)	8 5 0	1
5	Insert(3)	8 5 0 2 8 5 0 2 3	(4 + 1)
6	Insert(9)	8 5 0 2 3 9	1
7	Insert(4)	8 5 0 2 3 9 4	1
8	Insert(6)	8 5 0 2 3 9 4 6	1

-

- What is the Amortized running time of insert operation?
 - Suppose starting from the empty array (of size 1) one performs *n* insert operation in a sequence. What is the total running time?

• If
$$2^k \leq n < 2^{k+1}$$
, then

Basic ops. =
$$n + (1 + 2 + 2^2 + ... + 2^k)$$

= $n + 2^{k+1} - 1$
 $\leq 3n - 1$
= $O(n)$

伺下 イヨト イヨト

- What is the Amortized running time of insert operation?
 - Suppose starting from the empty array (of size 1) one performs *n* insert operation in a sequence. What is the total running time?

• If $2^k \leq n < 2^{k+1}$, then

Basic ops. =
$$n + (1 + 2 + 2^2 + ... + 2^k)$$

= $n + 2^{k+1} - 1$
 $\leq 3n - 1$
= $O(n)$

• So, the Amortized running time for the insert operation is O(1).

伺下 イヨト イヨト

- What is the Amortized running time of insert operation? O(1)
- Budgeting:
 - The cost of copying can be charged to the new cell locations that are created.
 - So, the total number of coins required will be *n* (for inserts) and at most 2*n* (for copies).

Implement Dynamic Arrays using regular Arrays.

- Initialisation: Create an array (say A) of some constant size.
- <u>Overflow</u>: Every time the array overflows, do:
 - Create an array B double the size of the current array A (i.e, |B|=2|A|)
 - Copy all the elements of A into B
 - Rename B as A
- What is the running time of insert operation? O(n)
- What is the Amortized running time of insert operation? O(1)

< 同 > < 三 > < 三 >

- One issue with Arrays is that they are not re-sizeable.
- If the only operations that need to be supported are insert and search, then Dynamic Arrays solve the issue of overflow.
- Suppose we also need to support deletion of a particular element or insertion of an element in the middle of the array.
- These operations are costly on Arrays since the elements need to be "shifted" to maintain contiguity.
- One data structure that does not have this issue is Linked List.

- <u>Linked List</u>: A collection of nodes with linear ordering defined on them.
 - Each node holds an element and points to the next node in the order.
 - The first node in the ordering is called the head and the last is called the tail.
 - The tail points to a null reference.
 - The data structure is accessed using a reference to the head node.

伺下 イヨト イヨト

Data Structures

- <u>Linked List</u>: A collection of nodes with linear ordering defined on them.
 - Each node holds an element and points to the next node in the order.
 - The first node in the ordering is called the head and the last is called the tail.
 - The tail points to a null reference.
 - The data structure is accessed using a reference to the head node.

Figure : Visual representation of a Linked List

Data Structures

- Linked List: A collection of nodes with linear ordering defined on them.
 - Each node holds an element and points to the next node in the order.
 - The first node in the ordering is called the head and the last is called the tail.
 - The tail points to a null reference.
 - The data structure is accessed using a reference to the head node.
- Advantages of linked list:
 - The size of the data structure is roughly equal to the size of the elements that need to be stored. So, it is space-efficient.
 - The data structure is resizable.
 - "Shifting" not required as in the case of Arrays.

Figure : Visual representation of a Linked List

Data Structures

- <u>Linked List</u>: A collection of nodes with linear ordering defined on them.
 - Each node holds an element and points to the next node in the order.
 - The first node in the ordering is called the head and the last is called the tail.
 - The tail points to a null reference.
 - The data structure is accessed using a reference to the head node.
- Give the mechanism for performing the following operations along with the running time:
 - Add an element at the beginning of the list:
 - Add an element at the end of the list:
 - Delete a particular node (given its reference):
 - Delete the first node containing element e:
 - Search element e in the linked list:
 - Remove the first element of the list:

向下 イヨト イヨト

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

æ

990