
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Queue and Stack

Can you implement a stack using an array? What is the
running time for each operation?

Can you implement a stack using a queue? What is the
running time for each operation?

Can you implement a queue using a stack?

Can you implement a queue using two stacks? What is the
running time for each operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.

Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.
Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

What is the running time of each of the basic operations:

Enqueue(e):
Dequeue():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.
Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

What is the running time of each of the basic operations:

Enqueue(e): O(1)
Dequeue(): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.
Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

What is the running time of each of the basic operations:

Enqueue(e): O(1)
Dequeue(): O(n)

Comment: It is very pessimistic to say that the running time of the
Dequeue() operation is O(n) (even though correct).
Is there a better way to analyse the running time in such scenarios
where an operation is costly only sometimes?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.
Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

We can compute the total cost by considering the cost per element of
the queue and then sum over all elements.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

We can compute the total cost by considering the cost per element of
the queue and then sum over all elements.
What is the cost associated with each element?

1 The element is pushed into Stack A.
2 The element (at some point of time) needs to be moved from Stack A

to Stack B.
3 The element is finally popped out from B.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

We can compute the total cost by considering the cost per element of
the queue and then sum over all elements.
What is the cost associated with each element? 4 operations

1 The element is pushed into Stack A. This costs 1 operation.
2 The element (at some point of time) needs to be moved from Stack A

to Stack B. This costs 2 operations.
3 The element is finally popped out from B. This costs 1 operation.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

We can compute the total cost by considering the cost per element of
the queue and then sum over all elements.
What is the cost of dequeue associated with each element? 4
operations

1 The element is pushed into Stack A. This costs 1 operation.
2 The element (at some point of time) needs to be moved from Stack A

to Stack B. This costs 2 operations.
3 The element is finally popped out from B. This costs 1 operation.

So, O(n) operations will be performed in total over a series of n
operations.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

We can compute the total cost by considering the cost per element of
the queue and then sum over all elements.
What is the cost of dequeue associated with each element? 4
operations

1 The element is pushed into Stack A. This costs 1 operation.
2 The element (at some point of time) needs to be moved from Stack A

to Stack B. This costs 2 operations.
3 The element is finally popped out from B. This costs 1 operation.

So, O(n) operations will be performed in total over a series of n
operations.
So, the amortized running time for the operations are:

Enqueue(e): O(1)
Dequeue(): O(1)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over a series
of operations.
Suppose a series of n operations are performed on the queue. What is
the average running time of Dequeue() operation?

When B is not empty, then the operation takes O(1) times.
When B is empty, then one has to pop all elements from A and push
them into B. This would take O(|A|) time. But, then the next |A|
dequeue operations will take O(1) time.

Another way of viewing this analysis is through of concept of
budgeting.
Here, we will argue that 4n coins are enough to fund n Queue
operation where you pay one coin for every simple operation
performed in the implementation (that is, on the stack(s)).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement a Queue using two stacks.

Let the two stacks be A and B.
Enqueue(e): PushA(e)

Algorithm

Dequeue()

- If (A and B are empty)
- return(null)

- If (B is not empty)
- return(PopB())

- while(A is not empty)
- PushB(PopA())

- return(PopB())

Amortized analysis: Per-operation running time averaged over a series
of operations.
So, the amortized running time for the operations are:

Enqueue(e): O(1)
Dequeue(): O(1)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over
a series of operations.

Let us see another example of Amortized analysis in Data
Structures.

Arrays are most basic data structures where elements can be
accessed using indices. Contiguous memory locations are used
for arrays.

One common issue while using Arrays is that the array size is
fixed once defined and if the array becomes full then there is
no way to handle the overflow.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over
a series of operations.

Let us see another example of Amortized analysis in Data
Structures.

Arrays are most basic data structures where elements can be
accessed using indices. Contiguous memory locations are used
for arrays.

One common issue while using Arrays is that the array size is
fixed once defined and if the array becomes full then there is
no way to handle the overflow.

Dynamic Arrays are arrays that are resizable and allows to
accommodate arbitrary number of elements.

Such arrays are dynamic in the sense that the array
“dynamically adjusts itself in case of overflows”.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Amortized analysis: Per-operation running time averaged over
a series of operations.

Let us see another example of Amortized analysis in Data
Structures.

Arrays are most basic data structures where elements can be
accessed using indices. Contiguous memory locations are used
for arrays.

One common issue while using Arrays is that the array size is
fixed once defined and if the array becomes full then there is
no way to handle the overflow.

Dynamic Arrays are arrays that are resizable and allows to
accommodate arbitrary number of elements.

Such arrays are dynamic in the sense that the array
“dynamically adjusts itself in case of overflows”.

Can you implement a dynamic arrays using an regular arrays?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

What is the running time of insert operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

What is the running time of insert operation? O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

What is the running time of insert operation? O(n)

What is the Amortized running time of insert operation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

What is the running time of insert operation? O(n)

What is the Amortized running time of insert operation?

Suppose starting from the empty array (of size 1) one performs
n insert operation in a sequence. What is the total running
time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

What is the Amortized running time of insert operation?

Suppose starting from the empty array (of size 1) one performs n insert
operation in a sequence. What is the total running time?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

What is the Amortized running time of insert operation?

Suppose starting from the empty array (of size 1) one performs
n insert operation in a sequence. What is the total running
time?
If 2k ≤ n < 2k+1, then

Basic ops. = n + (1 + 2 + 22 + ... + 2k)

= n + 2k+1 − 1

≤ 3n − 1

= O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

What is the Amortized running time of insert operation?

Suppose starting from the empty array (of size 1) one performs
n insert operation in a sequence. What is the total running
time?
If 2k ≤ n < 2k+1, then

Basic ops. = n + (1 + 2 + 22 + ... + 2k)

= n + 2k+1 − 1

≤ 3n − 1

= O(n)

So, the Amortized running time for the insert operation is
O(1).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

What is the Amortized running time of insert operation? O(1)

Budgeting:

The cost of copying can be charged to the new cell locations
that are created.
So, the total number of coins required will be n (for inserts)
and at most 2n (for copies).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Digression: Queue and Stack → Amortized Analysis

Problem

Implement Dynamic Arrays using regular Arrays.

Initialisation: Create an array (say A) of some constant size.

Overflow: Every time the array overflows, do:

Create an array B double the size of the current array A (i.e,
|B| = 2|A|)
Copy all the elements of A into B
Rename B as A

What is the running time of insert operation? O(n)

What is the Amortized running time of insert operation? O(1)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Linked List

One issue with Arrays is that they are not re-sizeable.

If the only operations that need to be supported are insert and
search, then Dynamic Arrays solve the issue of overflow.

Suppose we also need to support deletion of a particular
element or insertion of an element in the middle of the array.

These operations are costly on Arrays since the elements need
to be “shifted” to maintain contiguity.

One data structure that does not have this issue is Linked List.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Linked List

Linked List: A collection of nodes with linear ordering defined
on them.

Each node holds an element and points to the next node in the
order.
The first node in the ordering is called the head and the last is
called the tail.
The tail points to a null reference.
The data structure is accessed using a reference to the head
node.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Linked List

Linked List: A collection of nodes with linear ordering defined
on them.

Each node holds an element and points to the next node in the
order.
The first node in the ordering is called the head and the last is
called the tail.
The tail points to a null reference.
The data structure is accessed using a reference to the head
node.

Figure : Visual representation of a Linked List

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Linked List

Linked List: A collection of nodes with linear ordering defined on
them.

Each node holds an element and points to the next node in the
order.
The first node in the ordering is called the head and the last is
called the tail.
The tail points to a null reference.
The data structure is accessed using a reference to the head node.

Advantages of linked list:

The size of the data structure is roughly equal to the size of the
elements that need to be stored. So, it is space-efficient.
The data structure is resizable.
“Shifting” not required as in the case of Arrays.

Figure : Visual representation of a Linked List

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Data Structures
Linked List

Linked List: A collection of nodes with linear ordering defined on
them.

Each node holds an element and points to the next node in the
order.
The first node in the ordering is called the head and the last is
called the tail.
The tail points to a null reference.
The data structure is accessed using a reference to the head node.

Give the mechanism for performing the following operations along
with the running time:

Add an element at the beginning of the list:
Add an element at the end of the list:
Delete a particular node (given its reference):
Delete the first node containing element e:
Search element e in the linked list:
Remove the first element of the list:

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

