COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication? $O\left(n^{2}\right)$
- Is there a faster algorithm?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume n is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and ($A_{L} \cdot B_{R}$) and combine these values.

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, $\overline{\text { Design an algorithm to output }} A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume n is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and $\left(A_{L} \cdot B_{R}\right)$ and combine these values.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
- $S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
$-R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?

$$
T(n)=O\left(n^{2}\right)
$$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: Naïve Divide and Conquer with running time $O\left(n^{2}\right)$.
- Solution 3:
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and

$$
\overline{\left(A_{L}+B_{L}\right)} \cdot\left(A_{R}+B_{R}\right)-\left(A_{L} \cdot B_{L}\right)-\left(A_{R} \cdot B_{R}\right) .
$$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine (P, Q, R))
- What is the recurrence relation for the running time of the above algorithm?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ Karatsuba $\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine (P, Q, R))
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
- $R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R))$
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

$$
T(n) \leq O\left(n^{\log _{2} 3}\right)
$$

End

