COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array such that the array is sorted based on the names (dictionary order).
- How much time does each insert operations take? $O(n)$
- How much time does each search operation take? $O(\log n)$ using Binary Search
- In this case, if the majority of the operations performed are insert operations, then the previous one is better.

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

```
BinarySearch ( \(x, A, i, j\) )
    - if \((j<i)\) return( "not present" )
    - mid \(\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor\)
    - if \((A[\) mid \(]=x)\) return( "present" \()\)
    - if \((x<A[\) mid \(])\) return(BinarySearch \((x, A, i\), mid -1\())\)
    - else return(BinarySearch ( \(x, A\), mid \(+1, j\) ))
```

- What is the running time of the above algorithm in terms of the Big-O notation?
- Let us denote $T(n)$ as the worst case running time for searching in sorted arrays of size n.
- $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.
- How do we solve such recurrence relation?

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

Problem

Solving recurrence: $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.

- How do we solve such recurrence relation?
- Assume that n is a power of 2 . Then we can write:

$$
\begin{aligned}
T(n) & \leq T(n / 2)+c \\
& \leq(T(n / 4)+c)+c \\
& =T(n / 4)+2 c \\
& \vdots \\
& \leq T\left(n / 2^{i}\right)+i \cdot c \\
& \vdots \\
& \leq T(1)+\log n \cdot c \\
& \leq b+c \cdot \log n
\end{aligned}
$$

- So, $T(n)=O(\log n)$
- This is known as unrolling of the recursion.

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

Problem

Solving recurrence: $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.

- Similarly, we can solve $T(n) \geq T(\lfloor n / 2\rfloor)+d, T(1) \geq e$ to show that $T(n)=\Omega(\log n)$.
- What if n is not a power of two?

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

Problem

Solving recurrence: $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.

- Similarly, we can solve $T(n) \geq T(\lfloor n / 2\rfloor)+d, T(1) \geq e$ to show that $T(n)=\Omega(\log n)$.
- What if n is not a power of two?
- Note that $T(n) \leq T(n / 2)+c$ does not make sense.
- Let n_{1} and n_{2} be such that $n_{1} \leq n \leq n_{2}$ and n_{1}, n_{2} are the closest integers to n which are powers of 2 .
- Let $n_{1}=2^{k}$ and $n_{2}=2^{k+1}$.
- We know that $T\left(n_{1}\right) \leq T(n) \leq T\left(n_{2}\right)$
- Furthermore:

$$
\begin{aligned}
& e+d \cdot k \leq T\left(n_{1}\right) \leq b+c \cdot k \\
& e+d \cdot(k+1) \leq T\left(n_{2}\right) \leq b+c \cdot(k+1) \text {. }
\end{aligned}
$$

- So, $T(n)=\Theta(\log n)$.

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

Problem

Solving recurrence: $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.

- Similarly, we can solve $T(n) \geq T(\lfloor n / 2\rfloor)+d, T(1) \geq e$ to show that $T(n)=\Omega(\log n)$.
- What if n is not a power of two?
- Note that $T(n) \leq T(n / 2)+c$ does not make sense.
- Let n_{1} and n_{2} be such that $n_{1} \leq n \leq n_{2}$ and n_{1}, n_{2} are the closest integers to n which are powers of 2 .
- Let $n_{1}=2^{k}$ and $n_{2}=2^{k+1}$.
- We know that $T\left(n_{1}\right) \leq T(n) \leq T\left(n_{2}\right)$
- Furthermore:

$$
\begin{aligned}
e+d \cdot k & \leq T\left(n_{1}\right) \leq b+c \cdot k \\
e+d \cdot(k+1) & \leq T\left(n_{2}\right) \leq b+c \cdot(k+1)
\end{aligned}
$$

- So, $T(n)=\Theta(\log n)$.
- Informal comment: Dropping floors and ceilings in these recurrence relation does not change the running time behaviour.

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

- Recurrence relations of running time may also be written using $\operatorname{big}-(O, \Omega, \Theta)$ notation.
- For example, for binary search the recurrence relation for running time may be written as:

$$
T(n)=T(\lfloor n / 2\rfloor)+O(1) \text { for all } n>1 ; \quad T(1)=O(1)
$$

- Again, we can use the idea of unrolling to solve such recurrence relations.
- Exercise: Solve:

$$
T(n)=T(n-1)+O(1) \text { for all } n>1 ; \quad T(1)=O(1)
$$

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

- Recurrence relations of running time may also be written using $\operatorname{big}-(O, \Omega, \Theta)$ notation.
- For example, for binary search the recurrence relation for running time may be written as:

$$
T(n)=T(\lfloor n / 2\rfloor)+O(1) \text { for all } n>1 ; \quad T(1)=O(1)
$$

- Again, we can use the idea of unrolling to solve such recurrence relations.
- Exercise: Solve:

$$
T(n)=T(n-1)+O(1) \text { for all } n>1 ; \quad T(1)=O(1)
$$

- Another method used to solve recurrence relations is called the substitution method.
(1) Guess the running time bound.
(2) Check that the bound holds using Induction.

Introduction

Digression: Binary Search \rightarrow Solving Recurrence

- Another way of viewing unrolling of the recursion is Recurrence Trees.
- For example, consider the following recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c \cdot n \text { for all } n>1 ; \quad T(1) \leq b
$$

Introduction

- Solve: $T(n) \leq 2 \cdot T(n / 2)+c n^{2} ; T(1) \leq c$

Introduction

Digression: Ternary Search

- Solve: $T(n) \leq 2 \cdot T(n / 2)+c n^{2} ; T(1) \leq c$
- Solve: $T(n) \leq T(n / 3)+c ; T(1) \leq b$

Digression: Binary Search \rightarrow Solving Recurrences

- In Binary Search, we divided the array into two equal parts and then zoomed into one of the halves.
- Consider Ternary Search where we divide the array into three equal parts and then zoom into one of the three parts.

Introduction

Digression: Binary Search \rightarrow Solving Recurrences

- In Binary Search, we divided the array into two equal parts and then zoomed into one of the halves.
- Consider Ternary Search where we divide the array into three equal parts and then zoom into one of the three parts.
- What is the running time of Ternary Search? Is it better than Binary Search?

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication?

Introduction

Digression: Binary Search \rightarrow Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication? $O\left(n^{2}\right)$
- Is there a faster algorithm?

End

