
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

How much time does each insert operations take? O(n)
How much time does each search operation take? O(log n)
using Binary Search
In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

What is the running time of the above algorithm in terms of the
Big-O notation?
Let us denote T (n) as the worst case running time for searching in
sorted arrays of size n.
T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.
How do we solve such recurrence relation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Problem

Solving recurrence: T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.

How do we solve such recurrence relation?
Assume that n is a power of 2. Then we can write:

T (n) ≤ T (n/2) + c

≤ (T (n/4) + c) + c

= T (n/4) + 2c
...

≤ T (n/2i ) + i · c
...

≤ T (1) + log n · c
≤ b + c · log n

So, T (n) = O(log n)
This is known as unrolling of the recursion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Problem

Solving recurrence: T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.

Similarly, we can solve T (n) ≥ T (bn/2c) + d ,T (1) ≥ e to show that
T (n) = Ω(log n).
What if n is not a power of two?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Problem

Solving recurrence: T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.

Similarly, we can solve T (n) ≥ T (bn/2c) + d ,T (1) ≥ e to show that
T (n) = Ω(log n).
What if n is not a power of two?
Note that T (n) ≤ T (n/2) + c does not make sense.
Let n1 and n2 be such that n1 ≤ n ≤ n2 and n1, n2 are the closest
integers to n which are powers of 2.
Let n1 = 2k and n2 = 2k+1.
We know that T (n1) ≤ T (n) ≤ T (n2)
Furthermore:

e + d · k ≤ T (n1) ≤ b + c · k
e + d · (k + 1) ≤ T (n2) ≤ b + c · (k + 1).

So, T (n) = Θ(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Problem

Solving recurrence: T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.

Similarly, we can solve T (n) ≥ T (bn/2c) + d ,T (1) ≥ e to show that
T (n) = Ω(log n).
What if n is not a power of two?
Note that T (n) ≤ T (n/2) + c does not make sense.
Let n1 and n2 be such that n1 ≤ n ≤ n2 and n1, n2 are the closest
integers to n which are powers of 2.
Let n1 = 2k and n2 = 2k+1.
We know that T (n1) ≤ T (n) ≤ T (n2)
Furthermore:

e + d · k ≤ T (n1) ≤ b + c · k
e + d · (k + 1) ≤ T (n2) ≤ b + c · (k + 1).

So, T (n) = Θ(log n).
Informal comment: Dropping floors and ceilings in these recurrence
relation does not change the running time behaviour.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Recurrence relations of running time may also be written using
big-(O,Ω,Θ) notation.

For example, for binary search the recurrence relation for running time
may be written as:

T (n) = T (bn/2c) + O(1) for all n > 1; T (1) = O(1)

Again, we can use the idea of unrolling to solve such recurrence
relations.

Exercise: Solve:

T (n) = T (n − 1) + O(1) for all n > 1; T (1) = O(1)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Recurrence relations of running time may also be written using
big-(O,Ω,Θ) notation.

For example, for binary search the recurrence relation for running time
may be written as:

T (n) = T (bn/2c) + O(1) for all n > 1; T (1) = O(1)

Again, we can use the idea of unrolling to solve such recurrence
relations.

Exercise: Solve:

T (n) = T (n − 1) + O(1) for all n > 1; T (1) = O(1)

Another method used to solve recurrence relations is called the
substitution method.

1 Guess the running time bound.
2 Check that the bound holds using Induction.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrence

Another way of viewing unrolling of the recursion is Recurrence Trees.

For example, consider the following recurrence relation:

T (n) ≤ 2 · T (n/2) + c · n for all n > 1; T (1) ≤ b

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrences

Solve: T (n) ≤ 2 · T (n/2) + cn2;T (1) ≤ c

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Ternary Search

Solve: T (n) ≤ 2 · T (n/2) + cn2;T (1) ≤ c

Solve: T (n) ≤ T (n/3) + c;T (1) ≤ b

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrences

In Binary Search, we divided the array into two equal parts
and then zoomed into one of the halves.

Consider Ternary Search where we divide the array into three
equal parts and then zoom into one of the three parts.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Solving Recurrences

In Binary Search, we divided the array into two equal parts
and then zoomed into one of the halves.

Consider Ternary Search where we divide the array into three
equal parts and then zoom into one of the three parts.

What is the running time of Ternary Search? Is it better than
Binary Search?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Solution 1: Use long multiplication.

What is the running time of the algorithm that uses long
multiplication?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Solution 1: Use long multiplication.

What is the running time of the algorithm that uses long
multiplication? O(n2)

Is there a faster algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


