
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array.

How much time does each insert operations take? O(1)
How much time does each search operation take? O(n)
So, if the majority of the operations performed are search
operations, then this data structure is perhaps not the right
one.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

How much time does each insert operations take? O(n)
How much time does each search operation take? O(log n)
using Binary Search
In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x ,
check if x is present in A.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if
x is present in A.

Algorithm

BinarySearch-v1(x ,A, n)
- If A has no elements, then return(“not present”)
- Let mid denote the middle index of the array (i.e., mid = bn/2c)
- If (A[mid ] = x), then return(“present”)
- Let AL denote the left-half of the array and
AR denote the right-half of the array

- If (x < A[mid ])
- Search x in AL

- else
- Search x in AR

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if
x is present in A.

Algorithm

BinarySearch-v2(x ,A, n)
- If (n ≤ 0), then return(“not present”)
- mid ← bn/2c)
- If (A[mid ] = x), then return(“present”)
- AL ← A[1...(mid − 1)]
- AR ← A[(mid + 1)...n]
- If (x < A[mid ])

- Search x in AL return(BinarySearch-v2(x ,AL,mid − 1))
- else

- Search x in AR return(BinarySearch-v2(x ,AR , n −mid))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if
x is present in A.

Algorithm

BinarySearch-v2(x ,A, n)
- If (n ≤ 0), then return(“not present”)
- mid ← bn/2c)
- If (A[mid ] = x), then return(“present”)
- AL ← A[1...(mid − 1)]
- AR ← A[(mid + 1)...n]
- If (x < A[mid ])

- Search x in AL return(BinarySearch-v2(x ,AL,mid − 1))
- else

- Search x in AR return(BinarySearch-v2(x ,AR , n −mid))

The above function calls marked in red are called recursive
function calls.
The function BinarySearch-v2 is called a recursive function.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Recursion: Self reference.

In our context, we talk about recursive functions.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)
- If (n = 0 or n = 1)return(1)
- f ← Factorial(n − 1)
- return(n · f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)
- If (n = 0 or n = 1)return(1)
- f ← Factorial(n − 1)
- return(n · f )

Base case: Returns result for small value of inputs. Defines
the recursion termination condition.

Reduction step: Assuming that the function returns correct
value for smaller inputs use function calls on smaller inputs to
compute the result on the given input.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive functions?

Algorithm

Factorial(n)
- If (n = 0 or n = 1)return(1)
- f ← Factorial(n − 1)
- return(n · f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive
functions? Induction

Algorithm

Factorial(n)
- If (n = 0 or n = 1)return(1)
- f ← Factorial(n − 1)
- return(n · f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive
functions? Induction

Question: Is it always possible to avoid recursive functions?

Algorithm

Factorial(n)
- If (n = 0 or n = 1)return(1)
- f ← Factorial(n − 1)
- return(n · f )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive
functions? Induction

Question: Is it always possible to avoid recursive functions?
Yes.

Algorithm

Factorial-iterative(n)
- f ← 1
- for i = 1 to n

- f ← f · i
- return(f )

In fact, there is some efficiency advantage in not using
recursive functions.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive
functions? Induction

Question: Is it always possible to avoid recursive functions?
Yes.

In fact, there is some efficiency advantage in not using
recursive functions as function calls involve various time/space
overheads.

Why is recursion used then?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions

Question: How do we prove correctness of recursive
functions? Induction

Question: Is it always possible to avoid recursive functions?
Yes.

In fact, there is some efficiency advantage in not using
recursive functions as function calls involve various time/space
overheads.

Why is recursion used then?

In many cases, using recursion makes the program much
simpler and easy to understand and analyse.
Many problems in Computer Science have inherent recursive
structures (e.g., Fibonacci sequence)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

The Fibonacci sequence is defined in the following recursive
manner:

Base case: F (0) = 0, F (1) = 1
For all n > 1, F (n) = F (n − 1) + F (n − 2)

So, the sequence is:

F (0) = 0
F (1) = 1
F (2) = F (1) + F (0) = 1 + 0 = 1
F (3) = F (2) + F (1) = 1 + 1 = 2
F (4) = F (3) + F (2) = 2 + 1 = 3
...

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

The Fibonacci sequence is defined in the following recursive
manner:

Base case: F (0) = 0, F (1) = 1
For all n > 1, F (n) = F (n − 1) + F (n − 2)

So, the sequence is: 0, 1, 1, 2, 3, 5, 8, 13, ...

The problem itself is defined in a recursive manner. So, it is
natural to write a recursive method to solve this.

Algorithm

Recursive-Fib(n)
If (n = 0 or n = 1)return(n)
- return(Recursive-Fib(n − 1) + Recursive-Fib(n − 2))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

The Fibonacci sequence is defined in the following recursive
manner:

Base case: F (0) = 0, F (1) = 1
For all n > 1, F (n) = F (n − 1) + F (n − 2)

So, the sequence is: 0, 1, 1, 2, 3, 5, 8, 13, ...

The problem itself is defined in a recursive manner. So, it is
natural to write a recursive method to solve this.

Algorithm

Rfib(n)
If (n = 0 or n = 1)return(n)
- return(Rfib(n − 1) + Rfib(n − 2))

How do we analyse the running time of the above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

Algorithm

Rfib(n)
If (n = 0 or n = 1)return(n)
- return(Rfib(n − 1) + Rfib(n − 2))

How do we analyse the running time of the above algorithm?

Figure : Recursive call tree for recursive fibonacci algorithm.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

Algorithm

Rfib(n)
If (n = 0 or n = 1)return(n)
- return(Rfib(n − 1) + Rfib(n − 2))

How do we analyse the running time of the above algorithm?
Note that the same recursive call is made multiple times (e.g.,
Rfib(2))

Figure : Recursive call tree for recursive fibonacci algorithm.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search → Recursive Functions → Fibonacci Sequence

Algorithm

Rfib(n)
If (n = 0 or n = 1)return(n)
- return(Rfib(n − 1) + Rfib(n − 2))

How do we analyse the running time of the above algorithm?
Note that the same recursive call is made multiple times (e.g.,
Rfib(2))
In general, there are a lot of redundant calls.
The running time of the above recursive algorithm can in fact be
shown to be Ω(2n/2).
Question: Can we find the nth fibonacci number much faster than
this?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x ,
check if x is present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x ,
check if x is present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

How do we prove the correctness of above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x ,
check if x is present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

How do we prove the correctness of above algorithm?
Induction
P(i): The algorithm correctly searches any given element in
any sorted array of size i .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

How do we prove the correctness of above algorithm? Induction
P(i): The algorithm correctly searches any given element in any
sorted array of size i .
Is P(1) true?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

How do we prove the correctness of above algorithm? Induction
P(i): The algorithm correctly searches any given element in any
sorted array of size i .
Is P(1) true?
If P(1),P(2), ...,P(k) are true, then is P(k + 1) also true?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

What is the running time of the above algorithm in terms of the
Big-O notation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

What is the running time of the above algorithm in terms of the
Big-O notation?
Let us denote T (n) as the worst case running time for searching in
sorted arrays of size n.
Try writing a recurrence-relation for T (n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Introduction
Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x , check if x is
present in A.

Algorithm

BinarySearch(x ,A, i , j)
- if(j < i)return(“not present”)
- mid ← b i+j

2 c
- if(A[mid ] = x)return(“present”)
- if(x < A[mid ])return(BinarySearch(x ,A, i ,mid − 1))
- else return(BinarySearch(x ,A,mid + 1, j))

What is the running time of the above algorithm in terms of the
Big-O notation?
Let us denote T (n) as the worst case running time for searching in
sorted arrays of size n.
T (n) ≤ T (bn/2c) + c for all n > 1 and T (1) = b.
How do we solve such recurrence relation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


