COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem
Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array.

e How much time does each insert operations take? O(1)

e How much time does each search operation take? O(n)

e So, if the majority of the operations performed are search
operations, then this data structure is perhaps not the right

one.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

e How much time does each insert operations take? O(n)

e How much time does each search operation take? O(log n)
using Binary Search

e In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x,
check if x is present in A.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if
X is present in A.

v

Algorithm

BinarySearch-vi(x, A, n)
- If A has no elements, then return(“not present”)
- Let mid denote the middle index of the array (i.e., mid = |n/2])
- If (A[mid] = x), then return(“present”)
- Let A; denote the left-half of the array and
Ar denote the right-half of the array

- If (x < A[mid])

- Search x in AL
- else

- Search x in Ag

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if
X is present in A.

v

Algorithm

BinarySearch-v2(x, A, n)
- If (n < 0), then return(“not present”)
- mid < |n/2])
- If (A[mid] = x), then return(“present”)
- AL+ All...(mid — 1)]
- Ag + A[(mid + 1)...n]
- If (x < A[mid])
- Seareh—>—in-Ar return(BinarySearch-v2(x, Ay, mid — 1))
- else

- Seareh—>-Ag return(BinarySearch-v2(x, Ag, n — mid))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if
X is present in A.

BinarySearch-v2(x, A, n)
- If (n <0), then return(“not present”)
- mid + |n/2])
- If (A[mid] = x), then return(“present”)
- AL« A[l...(mid — 1)]
- AR + A[(mid + 1)...n]
- If (x < Almid])
- Seareh-xin-Ar return(BinarySearch-v2(x, Ay, mid — 1))
- else

- Seareh-x-inAg return(BinarySearch-v2(x, Ag, n — mid))

@ The above function calls marked in red are called recursive
function calls.
@ The function BinarySearch-v2 is called a recursive function.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

@ Recursion: Self reference.

@ In our context, we talk about recursive functions.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions

@ Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)
- If (n =10 or n = 1)return(1)
- f < Factorial(n—1)
- return(n -)

24 6 2 1

—[Factorial(4)]—'[Factorial(3)]—[Factorial(2)]—[Factorial(1)]

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

@ Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)
- If (n =10 or n = 1)return(1)
- f < Factorial(n—1)
- return(n -)

@ Base case: Returns result for small value of inputs. Defines
the recursion termination condition.

@ Reduction step: Assuming that the function returns correct
value for smaller inputs use function calls on smaller inputs to
compute the result on the given input.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive functions?

Algorithm

Factorial (n)
- If (n =0 or n = 1)return(1)
- f < Factorial(n—1)
- return(n - f)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive
functions? Induction

Algorithm

Factorial(n)
-If (n =20 or n = 1)return(1)
- f + Factorial(n—1)
- return(n - f)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive
functions? Induction

@ Question: Is it always possible to avoid recursive functions?

Algorithm

Factorial(n)
- If (n =10 or n = 1)return(1)
- f < Factorial(n—1)
- return(n - f)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive
functions? Induction

@ Question: Is it always possible to avoid recursive functions?
Yes.

Algorithm

Factorial-iterative(n)
-f+1
-fori=1ton

-f+f-i
- return(f)

@ In fact, there is some efficiency advantage in not using
recursive functions.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive
functions? Induction

@ Question: Is it always possible to avoid recursive functions?
Yes.

@ In fact, there is some efficiency advantage in not using
recursive functions as function calls involve various time/space
overheads.

@ Why is recursion used then?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

@ Question: How do we prove correctness of recursive
functions? Induction

@ Question: Is it always possible to avoid recursive functions?
Yes.

@ In fact, there is some efficiency advantage in not using
recursive functions as function calls involve various time/space
overheads.

@ Why is recursion used then?

e In many cases, using recursion makes the program much
simpler and easy to understand and analyse.

e Many problems in Computer Science have inherent recursive
structures (e.g., Fibonacci sequence)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

@ The Fibonacci sequence is defined in the following recursive
manner:
e Base case: F(0)=0, F(1)=1
e Foralln>1, F(n)=F(n—1)+ F(n—2)
@ So, the sequence is:

e F(0)=0

o F(1)=

e FQ)=F(1)+F(O0)=1+0=1
e FB)I=FQQ)+F(1)=1+1=2
e FA)=FQB)+F(2)=241=3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

@ The Fibonacci sequence is defined in the following recursive
manner:

e Base case: F(0)=0, F(1)=1
o Foralln>1 F(n)=F(n—1)+ F(n—2)
@ So, the sequence is: 0,1,1,2,3,5,8,13, ...
@ The problem itself is defined in a recursive manner. So, it is
natural to write a recursive method to solve this.

Algorithm

Recursive-Fib(n)
If (n =0 or n = 1)return(n)
- return(Recursive-Fib(n — 1) + Recursive-Fib(n —2))

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

@ The Fibonacci sequence is defined in the following recursive
manner:

e Base case: F(0)=0, F(1)=1
o Foralln>1 F(n)=F(n—1)+ F(n—2)
@ So, the sequence is: 0,1,1,2,3,5,8,13, ...
@ The problem itself is defined in a recursive manner. So, it is
natural to write a recursive method to solve this.

Algorithm

Rfib(n)
If (n =0 or n = 1)return(n)
- return(Rfib(n — 1) + Rfib(n —2))

@ How do we analyse the running time of the above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

Algorithm
Rfib(n)
If (n=0 or n = 1)return(n)
- return(Rfib(n — 1) + Rfib(n—2))

@ How do we analyse the running time of the above algorithm?

Figure : Recursive call tree for recursive fibonacci algorithm.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

REfib(n)
If (n=0 or n = 1)return(n)
- return(Rfib(n — 1) + Rfib(n—2))

@ How do we analyse the running time of the above algorithm?
o Note that the same recursive call is made multiple times (e.g.,
Rfib(2))

Figure : Recursive call tree for recursive fibonacci algorithm.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Recursive Functions — Fibonacci Sequence

Algorithm

Rfib(n)
If (n =0 or n = 1)return(n)
- return(Rfib(n — 1) + Rfib(n —2))

@ How do we analyse the running time of the above algorithm?

o Note that the same recursive call is made multiple times (e.g.,
Rfib(2))

In general, there are a lot of redundant calls.

The running time of the above recursive algorithm can in fact be
shown to be Q(2"/2).

Question: Can we find the nt" fibonacci number much faster than
this?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x,
check if x is present in A.

Algorithm

BinarySearch(x, A, i,)
- if(j < i)return(“not present”)
- mid + | 3]
if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid +1,/))

\

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x,
check if x is present in A.

BinarySearch(x, A, i,)
if(j < i)return(“not present”)
- mid « ||
if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid +1,/))

\

@ How do we prove the correctness of above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x,
check if x is present in A.

Algorithm

BinarySearch(x, A, i,)
- if(j < i)return(“not present”)
- mid + ||
if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid 4+ 1,))

A\

@ How do we prove the correctness of above algorithm?
Induction

e P(i): The algorithm correctly searches any given element in
any sorted array of size i.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

BinarySearch(x, A, i,j)
- if(j < i)return(“not present”)
mid < L%LJ
if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid + 1, j))

@ How do we prove the correctness of above algorithm? Induction
P(i): The algorithm correctly searches any given element in any
sorted array of size i.

e Is P(1) true?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

Algorithm
BinarySearch(x, A, i,j)
- if(j < i)return(“not present")
- mid + ||
if(A[mid] = x)return(“present")
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid +1,))

A\

@ How do we prove the correctness of above algorithm? Induction
P(i): The algorithm correctly searches any given element in any
sorted array of size i.

Is P(1) true?

If P(1), P(2),..., P(k) are true, then is P(k + 1) also true?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

BinarySearch(x, A, i,j)
- if(j < i)return(“not present”)
- mid + L%LJ
- if(A[mid] = x)return(“present”)
- if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
- else return(BinarySearch(x, A, mid + 1, j))

@ What is the running time of the above algorithm in terms of the
Big-O notation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

Algorithm
BinarySearch(x, A, i,j)
- if(j < i)return(“not present")
- mid + ||
if(A[mid] = x)return(“present")
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid +1,))

A\

@ What is the running time of the above algorithm in terms of the
Big-O notation?

Let us denote T(n) as the worst case running time for searching in
sorted arrays of size n.

e Try writing a recurrence-relation for T(n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

4

BinarySearch(x, A, i,)

- if(j < i)return(“not present")

- mid « | 3]

- if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid + 1,))

@ What is the running time of the above algorithm in terms of the
Big-O notation?

Let us denote T(n) as the worst case running time for searching in
sorted arrays of size n.

T(n) < T(|[n/2])+cforalln>1and T(1)=b.

How do we solve such recurrence relation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

