COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array.
- How much time does each insert operations take? $O(1)$
- How much time does each search operation take? $O(n)$
- So, if the majority of the operations performed are search operations, then this data structure is perhaps not the right one.

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array such that the array is sorted based on the names (dictionary order).
- How much time does each insert operations take? $O(n)$
- How much time does each search operation take? $O(\log n)$ using Binary Search
- In this case, if the majority of the operations performed are insert operations, then the previous one is better.

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch-v1 (x, A, n)

- If A has no elements, then return("not present")
- Let mid denote the middle index of the array (i.e., mid $=\lfloor n / 2\rfloor$)
- If $(A[m i d]=x)$, then return("present" $)$
- Let A_{L} denote the left-half of the array and
A_{R} denote the right-half of the array
- If ($x<A[\mathrm{mid}]$)
- Search x in A_{L}
- else
- Search x in A_{R}

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch-v2 (x, A, n)

- If $(n \leq 0)$, then return("not present")
- mid $\leftarrow\lfloor n / 2\rfloor)$
- If $(A[\operatorname{mid}]=x)$, then return("present" $)$
- $A_{L} \leftarrow A[1 \ldots($ mid -1$)]$
$-A_{R} \leftarrow A[(m i d+1) \ldots n]$
- If $(x<A[m i d])$
- Search x in A_{L} return(BinarySearch-v2 $\left(x, A_{L}\right.$, mid -1$)$)
- else
- Search x in A_{R} return(BinarySearch-v2 $\left(x, A_{R}, n-m i d\right)$)

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch-v2 (x, A, n)

- If $(n \leq 0)$, then return("not present")
- mid $\leftarrow\lfloor n / 2\rfloor)$
- If $(A[\operatorname{mid}]=x)$, then return("present" $)$
- $A_{L} \leftarrow A[1 \ldots($ mid -1$)]$
$-A_{R} \leftarrow A[(\operatorname{mid}+1) \ldots n]$
- If $(x<A[m i d])$
- Search x in A_{L} return(BinarySearch-v2 $\left(x, A_{L}\right.$, mid -1$)$)
- else
- Search x in A_{R} return(BinarySearch-v2 $\left(x, A_{R}, n\right.$ - mid))
- The above function calls marked in red are called recursive function calls.
- The function BinarySearch-v2 is called a recursive function.

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Recursion: Self reference.

- In our context, we talk about recursive functions.

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)

- If ($n=0$ or $n=1$)return(1)
$-f \leftarrow$ Factorial $(n-1)$
- return $(n \cdot f)$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Recursive function: A function that makes a call to itself.

Algorithm

Factorial(n)

- If ($n=0$ or $n=1$)return(1)
- $f \leftarrow$ Factorial $(n-1)$
- return $(n \cdot f)$
- Base case: Returns result for small value of inputs. Defines the recursion termination condition.
- Reduction step: Assuming that the function returns correct value for smaller inputs use function calls on smaller inputs to compute the result on the given input.

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Question: How do we prove correctness of recursive functions?

Algorithm

Factorial(n)

- If ($n=0$ or $n=1$)return(1)
$-f \leftarrow$ Factorial $(n-1)$
- return $(n \cdot f)$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Question: How do we prove correctness of recursive functions? Induction

Algorithm

Factorial(n)

- If ($n=0$ or $n=1$)return(1)
- $f \leftarrow$ Factorial $(n-1)$
- return $(n \cdot f)$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Question: How do we prove correctness of recursive functions? Induction
- Question: Is it always possible to avoid recursive functions?

Algorithm

Factorial(n)

- If ($n=0$ or $n=1$)return(1)
$-f \leftarrow$ Factorial $(n-1)$
- return $(n \cdot f)$

Introduction

Digression: Binary Search \rightarrow Recursive Functions

- Question: How do we prove correctness of recursive functions? Induction
- Question: Is it always possible to avoid recursive functions? Yes.

Algorithm

Factorial-iterative(n)
$-f \leftarrow 1$

- for $i=1$ to n
$-f \leftarrow f \cdot i$
- return (f)
- In fact, there is some efficiency advantage in not using recursive functions.
- Question: How do we prove correctness of recursive functions? Induction
- Question: Is it always possible to avoid recursive functions? Yes.
- In fact, there is some efficiency advantage in not using recursive functions as function calls involve various time/space overheads.
- Why is recursion used then?
- Question: How do we prove correctness of recursive functions? Induction
- Question: Is it always possible to avoid recursive functions? Yes.
- In fact, there is some efficiency advantage in not using recursive functions as function calls involve various time/space overheads.
- Why is recursion used then?
- In many cases, using recursion makes the program much simpler and easy to understand and analyse.
- Many problems in Computer Science have inherent recursive structures (e.g., Fibonacci sequence)

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

- The Fibonacci sequence is defined in the following recursive manner:
- Base case: $F(0)=0, F(1)=1$
- For all $n>1, F(n)=F(n-1)+F(n-2)$
- So, the sequence is:
- $F(0)=0$
- $F(1)=1$
- $F(2)=F(1)+F(0)=1+0=1$
- $F(3)=F(2)+F(1)=1+1=2$
- $F(4)=F(3)+F(2)=2+1=3$
-

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

- The Fibonacci sequence is defined in the following recursive manner:
- Base case: $F(0)=0, F(1)=1$
- For all $n>1, F(n)=F(n-1)+F(n-2)$
- So, the sequence is: $0,1,1,2,3,5,8,13, \ldots$
- The problem itself is defined in a recursive manner. So, it is natural to write a recursive method to solve this.

Algorithm

Recursive-Fib (n)
If ($n=0$ or $n=1$)return(n)

- return(Recursive-Fib $(n-1)+$ Recursive-Fib $(n-2))$

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

- The Fibonacci sequence is defined in the following recursive manner:
- Base case: $F(0)=0, F(1)=1$
- For all $n>1, F(n)=F(n-1)+F(n-2)$
- So, the sequence is: $0,1,1,2,3,5,8,13, \ldots$
- The problem itself is defined in a recursive manner. So, it is natural to write a recursive method to solve this.

Algorithm

Rfib (n)
If ($n=0$ or $n=1$)return (n)
$-\operatorname{return}(\operatorname{Rfib}(n-1)+\operatorname{Rfib}(n-2))$

- How do we analyse the running time of the above algorithm?

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

```
Algorithm
Rfib(n)
    If ( }n=0\mathrm{ or }n=1)\mathrm{ return( }n\mathrm{ )
    - return(Rfib (n-1) + Rfib (n-2))
```

- How do we analyse the running time of the above algorithm?

Figure: Recursive call tree for recursive fibonacci algorithm.

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

```
Algorithm
Rfib(n)
    If ( }n=0\mathrm{ or }n=1)\mathrm{ return( }n\mathrm{ )
    - return(Rfib}(n-1)+\operatorname{Rfib}(n-2)
```

- How do we analyse the running time of the above algorithm?
- Note that the same recursive call is made multiple times (e.g., Rfib(2))

Figure: Recursive call tree for recursive fibonacci algorithm.

Introduction

Digression: Binary Search \rightarrow Recursive Functions \rightarrow Fibonacci Sequence

Algorithm

```
Rfib(n)
    If (n=0 or n=1)return( }n\mathrm{ )
    - return(Rfib(n-1) + Rfib(n-2))
```

- How do we analyse the running time of the above algorithm?
- Note that the same recursive call is made multiple times (e.g., Rfib(2))
- In general, there are a lot of redundant calls.
- The running time of the above recursive algorithm can in fact be shown to be $\Omega\left(2^{n / 2}\right)$.
- Question: Can we find the $n^{\text {th }}$ fibonacci number much faster than this?

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch (x, A, i, j)

- if($j<i)$ return("not present")
- mid $\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor$
- if $(A[m i d]=x)$ return("present")
- if $(x<A[$ mid $])$ return(BinarySearch $(x, A, i$, mid -1$))$
- else return(BinarySearch $(x, A$, mid $+1, j))$

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch (x, A, i, j)

- if($(<i)$ return("not present")
- mid $\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor$
- if $(A[m i d]=x)$ return("present")
- if $(x<A[$ mid $])$ return(BinarySearch $(x, A, i$, mid -1$))$
- else return(BinarySearch (x, A, mid $+1, j$))
- How do we prove the correctness of above algorithm?

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch (x, A, i, j)

- if($j<i)$ return("not present")
- mid $\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor$
- if $(A[m i d]=x)$ return("present")
- if $(x<A[$ mid $])$ return(BinarySearch $(x, A, i$, mid -1$))$
- else return(BinarySearch $(x, A$, mid $+1, j))$
- How do we prove the correctness of above algorithm? Induction
- $P(i)$: The algorithm correctly searches any given element in any sorted array of size i.

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

BinarySearch (x, A, i, j)

- if $(j<i)$ return("not present")
- mid $\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor$
- if $(A[$ mid $]=x)$ return("present")
- if $(x<A[$ mid $])$ return(BinarySearch $(x, A, i$, mid -1$))$
- else return(BinarySearch $(x, A$, mid $+1, j))$
- How do we prove the correctness of above algorithm? Induction
- $P(i)$: The algorithm correctly searches any given element in any sorted array of size i.
- Is $P(1)$ true?

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

```
BinarySearch(x,A,i,j)
    - if( }j<i)return("not present"
    - mid}\leftarrow\lfloor\frac{i+j}{2}
    - if(A[mid] = x)return("present")
    - if(x<A[mid])return(BinarySearch(x,A,i, mid - 1))
    - else return(BinarySearch(x,A,mid +1,j))
```

- How do we prove the correctness of above algorithm? Induction
- $P(i)$: The algorithm correctly searches any given element in any sorted array of size i.
- Is $P(1)$ true?
- If $P(1), P(2), \ldots, P(k)$ are true, then is $P(k+1)$ also true?

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

```
BinarySearch(x, A,i,j)
    - if( }j<i)return("not present")
    - mid }\leftarrow\lfloor\frac{i+j}{2}
    - if(A[mid] = x)return("present")
    - if(x<A[mid])return(BinarySearch(x,A,i,mid - 1))
    - else return(BinarySearch(x,A,mid +1,j))
```

- What is the running time of the above algorithm in terms of the Big-O notation?

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

```
BinarySearch(x,A,i,j)
    - if( }j<i)return("not present"
    - mid}\leftarrow\lfloor\frac{i+j}{2}
    - if(A[mid] = x)return("present")
    - if(x<A[mid])return(BinarySearch(x,A,i, mid - 1))
    - else return(BinarySearch(x,A,mid +1,j))
```

- What is the running time of the above algorithm in terms of the Big-O notation?
- Let us denote $T(n)$ as the worst case running time for searching in sorted arrays of size n.
- Try writing a recurrence-relation for $T(n)$.

Introduction

Digression: Binary Search

Problem

Given a sorted array A containing n integers and an integer x, check if x is present in A.

Algorithm

```
BinarySearch ( \(x, A, i, j\) )
    - if \((j<i)\) return( "not present" )
    - mid \(\leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor\)
    - if \((A[\) mid \(]=x)\) return( "present" \()\)
    - if \((x<A[\) mid \(])\) return(BinarySearch \((x, A, i\), mid -1\())\)
    - else return(BinarySearch ( \(x, A\), mid \(+1, j\) ))
```

- What is the running time of the above algorithm in terms of the Big-O notation?
- Let us denote $T(n)$ as the worst case running time for searching in sorted arrays of size n.
- $T(n) \leq T(\lfloor n / 2\rfloor)+c$ for all $n>1$ and $T(1)=b$.
- How do we solve such recurrence relation?

End

