COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Administrative Slide

o URGENT: Register on gradescope.

e Use course code 97547M to add COL106.
e Use your IIT Delhi email address.
e Do this before the lecture tomorrow (Fri).

@ Quiz 1 and 2 in the lecture tomorrow (Fri).

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

e Data Structure: Systematic way of organising and accessing
data.

@ Algorithm: A step-by-step procedure for performing some
task.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

@ We do an asymptotic worst-case analysis noting the running
time in Big-(O, €, ©) notation and use it to compare
algorithms.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

o We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that

for all i, B[i] = Z}:l Alj]. (That is find cumulative sum of elements in A.)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

o We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Given an integer array A with n elements output another array B such that
for all i, B[i] = ZJ’-:I Alj]. (That is find cumulative sum of elements in A.)
Algorithm
CumulativeSum (A, n)
-fori=1ton
-sum <0
-forj=1toi
- sum < sum + A[j]
- B[i] - sum
- return(B)

4

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

@ We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Given an integer array A with n elements output another array B such that
for all i, B[i] = 37;_; A[j]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)
-fori=1ton 3n operations
-sum <0 n operations
-forj=1toi 3. (142434 ... + n) operations
- sum < sum + A[j] | 2 (@+2+3+... + ) operations
- Bl[i] < sum n operations
- return(B) 1 operation (assuming that only reference to the array is returned)
Total: 1 - (5n% + 15n + 2) operations

4

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.
@ We do an asymptotic worst-case analysis noting the running time in
Big-(0, Q, ©) notation and use it to compare algorithms.

Given an integer array A with n elements output another array B such that
for all i, B[i] = 33;_; Alj]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)

-fori=1ton 2n operations
- sum <+ 0 n operations
—forj: ltoi 2. (1+2+4 3+ ... + n) operations
- sum < sum + A[j] | 2- 4243+ ...+ n) operations
- B[i] + sum n operations
- return(B) i) G (i i Gty s i e 2y 5 )

‘ Total: 1 - (51 + 15n + 2) operations

@ So, the asymptotic worst-case running time of the above algorithm is
O(n?). Note that we can also say the running time is Q(n?) and

o(n?).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
o We use proof of correctness to argue correctness.
@ It should run fast.
@ We do an asymptotic worst-case analysis noting the running time in
Big-(O, €, ©) notation and use it to compare algorithms.

Given an integer array A with n elements output another array B such that
for all i, B[i] = >3;_; Alj]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum (A, n)

-fori=1ton e
- sum <0 n operations
-forj=1to i/ 2. (L4243 ... + n) operations
- sum < sum + A[j] | 2-@+2+3+ ..+ ) operations
- B[i] = sum n operations
- return(B) 1 operation (assuming that only reference to the array is returned)

‘ Total: 1 - (5n% + 15n + 2) operations

@ So, the asymptotic worst-case running time of the above algorithm is
O(n?). Note that we can also say the running time is Q(n?) and
o(n?).

@ Can you design a better O(n) (linear-time) algorithm for this
problem?

Ragesh Jaiswal, IITD 06: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
o What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

e We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Given an integer array A with n elements output another array B such that

for all i, B[i] = >7;_; A[j]. (That is find cumulative sum of elements in A.)

v

Algorithm

BetterCumulativeSum (A, n)
-sum<+ 0 o(1)
-fori=1ton 0o(n)
- sum < sum + A[i] o(n)
- B[i] + sum o(n)
- return(B) o)
Total: O(n)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.

@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

@ We do an asymptotic worst-case analysis noting the running
time in Big-(O, 2, ©) notation and use it to compare
algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

o We do an asymptotic worst-case analysis noting the running time in
Big-(0, €, ©) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm
SelectionSort (A, n) FindMin(A, n, i)
-fori=1ton—-1 min < i
- min < FindMin (A, n, i) -forj=i+1ton
- Swap (A, i, min) - if (A[j] < A[min]) min < j
- return(min)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
e We use proof of correctness to argue correctness.
@ It should run fast.

e We do an asymptotic worst-case analysis noting the running time in
Big-(O, €, ©) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm
SelectionSort (A, n) FindMin (A, n, i)
-fori=1ton—1 min < i
- min < FindMin (A, n, i) -forj=i+1ton
- Swap (A, i, min) - if (A[j] < A[min]) min < j
- return(min)

o What is an appropriate loop-invariant for the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

e We do an asymptotic worst-case analysis noting the running time
in Big-(O, Q, ©) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm
SelectionSort (A, n) FindMin (A, n, i)
-fori=1ton—1 min < i
- min < FindMin (A, n, i) -forj=i+1ton
- Swap (A, i, min) - if (A[j] < A[min]) min < j
- return(min)

@ What is running time of the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

@ We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

BubbleSort (A, n)
-fori=1to(n—1)
-forj=1to (n—1)
- if(A[j] > A[j +1]) Swap(A,j,j +1)

@ What is an appropriate loop-invariant for the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ We use proof of correctness to argue correctness.
@ It should run fast.

@ We do an asymptotic worst-case analysis noting the running time in
Big-(O, Q, ©) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

BubbleSort (A, n)
-fori=1to(n—1)
-forj=1to (n—1)
- if(A[j] > A[j +1]) Swap(A,j,j +1)

@ What is running time of the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array.

e How much time does each insert operations take?
e How much time does each search operation take?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem
Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array.

e How much time does each insert operations take? O(1)

e How much time does each search operation take? O(n)

e So, if the majority of the operations performed are search
operations, then this data structure is perhaps not the right

one.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

e How much time does each insert operations take?
e How much time does each search operation take?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

e How much time does each insert operations take? O(n)

e How much time does each search operation take? O(log n)
using Binary Search

e In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



End )

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



