
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Administrative Slide

URGENT: Register on gradescope.

Use course code 9Z547M to add COL106.
Use your IIT Delhi email address.
Do this before the lecture tomorrow (Fri).

Quiz 1 and 2 in the lecture tomorrow (Fri).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Data Structure: Systematic way of organising and accessing
data.

Algorithm: A step-by-step procedure for performing some
task.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running
time in Big-(O, Ω, Θ) notation and use it to compare
algorithms.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)
- for i = 1 to n

- sum← 0
- for j = 1 to i

- sum← sum + A[j ]
- B[i ]← sum

- return(B)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)
- for i = 1 to n 3n operations

- sum← 0 n operations

- for j = 1 to i 3 · (1 + 2 + 3 + ... + n) operations

- sum← sum + A[j ] 2 · (1 + 2 + 3 + ... + n) operations

- B[i ]← sum n operations

- return(B) 1 operation (assuming that only reference to the array is returned)

Total: 1
2
· (5n2 + 15n + 2) operations

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)
- for i = 1 to n 2n operations

- sum← 0 n operations

- for j = 1 to i 2 · (1 + 2 + 3 + ... + n) operations

- sum← sum + A[j ] 2 · (1 + 2 + 3 + ... + n) operations

- B[i ]← sum n operations

- return(B) 1 operation (assuming that only reference to the array is returned)

Total: 1
2
· (5n2 + 15n + 2) operations

So, the asymptotic worst-case running time of the above algorithm is
O(n2). Note that we can also say the running time is Ω(n2) and
Θ(n2).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum(A, n)
- for i = 1 to n 2n operations

- sum← 0 n operations

- for j = 1 to i 2 · (1 + 2 + 3 + ... + n) operations

- sum← sum + A[j ] 2 · (1 + 2 + 3 + ... + n) operations

- B[i ]← sum n operations

- return(B) 1 operation (assuming that only reference to the array is returned)

Total: 1
2
· (5n2 + 15n + 2) operations

So, the asymptotic worst-case running time of the above algorithm is
O(n2). Note that we can also say the running time is Ω(n2) and
Θ(n2).
Can you design a better O(n) (linear-time) algorithm for this
problem?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that
for all i , B[i ] =

∑i
j=1 A[j ]. (That is find cumulative sum of elements in A.)

Algorithm

BetterCumulativeSum(A, n)
- sum← 0 O(1)

- for i = 1 to n O(n)

- sum← sum + A[i ] O(n)

- B[i ]← sum O(n)

- return(B) O(1)

Total: O(n)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running
time in Big-(O, Ω, Θ) notation and use it to compare
algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

SelectionSort(A, n) FindMin(A, n, i)
- for i = 1 to n − 1 min← i

- min← FindMin(A, n, i) - for j = i + 1 to n
- Swap(A, i ,min) - if (A[j ] < A[min]) min← j

- return(min)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

SelectionSort(A, n) FindMin(A, n, i)
- for i = 1 to n − 1 min← i

- min← FindMin(A, n, i) - for j = i + 1 to n
- Swap(A, i ,min) - if (A[j ] < A[min]) min← j

- return(min)

What is an appropriate loop-invariant for the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time
in Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

SelectionSort(A, n) FindMin(A, n, i)
- for i = 1 to n − 1 min← i

- min← FindMin(A, n, i) - for j = i + 1 to n
- Swap(A, i ,min) - if (A[j ] < A[min]) min← j

- return(min)

What is running time of the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

BubbleSort(A, n)
- for i = 1 to (n − 1)

- for j = 1 to (n − i)
- if(A[j ] > A[j + 1]) Swap(A, j , j + 1)

What is an appropriate loop-invariant for the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running time in
Big-(O, Ω, Θ) notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

BubbleSort(A, n)
- for i = 1 to (n − 1)

- for j = 1 to (n − i)
- if(A[j ] > A[j + 1]) Swap(A, j , j + 1)

What is running time of the above algorithm?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array.

How much time does each insert operations take?
How much time does each search operation take?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array.

How much time does each insert operations take? O(1)
How much time does each search operation take? O(n)
So, if the majority of the operations performed are search
operations, then this data structure is perhaps not the right
one.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

How much time does each insert operations take?
How much time does each search operation take?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

Insert: Insert a new record of a student and his/her score.

Search: Find the score of a given student.

Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

How much time does each insert operations take? O(n)
How much time does each search operation take? O(log n)
using Binary Search
In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms


