COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Administrative Slide

- URGENT: Register on gradescope.
- Use course code 9Z547M to add COL106.
- Use your IIT Delhi email address.
- Do this before the lecture tomorrow (Fri).
- Quiz 1 and 2 in the lecture tomorrow (Fri).

Introduction

- Data Structure: Systematic way of organising and accessing data.
- Algorithm: A step-by-step procedure for performing some task.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

```
Algorithm
CumulativeSum ( \(A, n\) )
    - for \(i=1\) to \(n\)
    - sum \(\leftarrow 0\)
    - for \(j=1\) to \(i\)
        - sum \(\leftarrow\) sum \(+A[j]\)
    - \(B[i] \leftarrow\) sum
    - return \((B)\)
```


Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

Algorithm

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum (A, n)	
- for $i=1$ to n	$2 n$ operations
- sum $\leftarrow 0$	n operations
- for $j=1$ to i	$2 \cdot(1+2+3+\ldots+n)$ operations
- sum $\leftarrow \operatorname{sum}+A[j]$	$2 \cdot(1+2+3+\ldots+n)$ operations
$-B[i] \leftarrow \operatorname{sum}$	n operations
- return (B)	1 operation (assuming that only reference to the array is returned)
	Total: $\frac{1}{2} \cdot\left(5 n^{2}+15 n+2\right)$ operations

- So, the asymptotic worst-case running time of the above algorithm is $O\left(n^{2}\right)$. Note that we can also say the running time is $\Omega\left(n^{2}\right)$ and $\Theta\left(n^{2}\right)$.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

Algorithm

CumulativeSum (A, n)	
- for $i=1$ to n	$2 n$ operations
- sum $\leftarrow 0$	n operations
- for $j=1$ to i	$2 \cdot(1+2+3+\ldots+n)$ operations
- sum $\leftarrow \operatorname{sum}+A[j]$	$2 \cdot(1+2+3+\ldots+n)$ operations
$-B[i] \leftarrow$ sum	n operations
- return (B)	1 operation (assuming that only reference to the array is returned)
	Total: $\frac{1}{2} \cdot\left(5 n^{2}+15 n+2\right)$ operations

- So, the asymptotic worst-case running time of the above algorithm is $O\left(n^{2}\right)$. Note that we can also say the running time is $\Omega\left(n^{2}\right)$ and $\Theta\left(n^{2}\right)$.
- Can you design a better $O(n)$ (linear-time) algorithm for this problem?

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Given an integer array A with n elements output another array B such that for all $i, B[i]=\sum_{j=1}^{i} A[j]$. (That is find cumulative sum of elements in A.)

Algorithm

```
BetterCumulativeSum \((A, n)\)
    - sum \(\leftarrow 0\)
    \(O(1)\)
    - for \(i=1\) to \(n\)
        \(O(n)\)
        - sum \(\leftarrow\) sum \(+A[i] \quad O(n)\)
        - \(B[i] \leftarrow\) sum \(\quad O(n)\)
    - return \((B) \quad o_{(1)}\)
                            Total: \(O(n)\)
```


Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

$$
\begin{aligned}
& \text { SelectionSort }(A, n) \\
& \quad-\text { for } i=1 \text { to } n-1 \\
& \quad-\min \leftarrow \operatorname{FindMin}(A, n, i) \\
& \quad-\operatorname{Swap}(A, i, \min)
\end{aligned}
$$

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

```
SelectionSort(A, n)
    - for i=1 to n-1
    - min}\leftarrowF\mathrm{ FindMin(A,n,i)
    - Swap(A, i,min)
```

```
FindMin \((A, n, i)\)
    \(\min \leftarrow i\)
    - for \(j=i+1\) to \(n\)
        - if \((A[j]<A[\min ]) \min \leftarrow j\)
    - return (min)
```

- What is an appropriate loop-invariant for the above algorithm?

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

```
SelectionSort(A, n)
    - for i=1 to n-1
    - min}\leftarrowF\mathrm{ FindMin(A,n,i)
    - Swap(A, i,min)
```

```
FindMin \((A, n, i)\)
    \(\min \leftarrow i\)
    - for \(j=i+1\) to \(n\)
        - if \((A[j]<A[\min ]) \min \leftarrow j\)
    - return (min)
```

- What is running time of the above algorithm?

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

```
BubbleSort ( \(A, n\) )
    - for \(i=1\) to \((n-1)\)
    - for \(j=1\) to \((n-i)\)
        - if \((A[j]>A[j+1]) \operatorname{Swap}(A, j, j+1)\)
```

- What is an appropriate loop-invariant for the above algorithm?

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Problem

Sorting: Given an integer array A with n elements, sort it.

Algorithm

```
BubbleSort ( \(A, n\) )
    - for \(i=1\) to \((n-1)\)
    - for \(j=1\) to \((n-i)\)
    - if \((A[j]>A[j+1]) \operatorname{Swap}(A, j, j+1)\)
```

- What is running time of the above algorithm?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array.
- How much time does each insert operations take?
- How much time does each search operation take?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array.
- How much time does each insert operations take? $O(1)$
- How much time does each search operation take? $O(n)$
- So, if the majority of the operations performed are search operations, then this data structure is perhaps not the right one.

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array such that the array is sorted based on the names (dictionary order).
- How much time does each insert operations take?
- How much time does each search operation take?

Introduction

- How do Data Structures play a part in making computational tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that queries of the following nature may be answered:

- Insert: Insert a new record of a student and his/her score.
- Search: Find the score of a given student.
- Suppose we maintain the information in a 2-dimensional array such that the array is sorted based on the names (dictionary order).
- How much time does each insert operations take? $O(n)$
- How much time does each search operation take? $O(\log n)$ using Binary Search
- In this case, if the majority of the operations performed are insert operations, then the previous one is better.

End

