
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Data Structure: Systematic way of organising and accessing
data.

Algorithm: A step-by-step procedure for performing some
task.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform independent way of comparing
algorithms.

Solution: Count the worst-case number of basic operations
b(n) for inputs of size n and then analyse how this function
b(n) behaves as n grows. This is known as worst-case analysis.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.

Example

FindPositiveSum(A, n)
- sum← 0 [1 assignment]

- For i = 1 to n [1 assignment + 1 comparison + 1 arithmetic]*n

- if (A[i ] > 0)sum← sum + A[i ] [1 assignment + 1 arithmetic + 1 comparison]*n

- return(sum) [1 return]

Total: 6n + 2

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Few observations:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Few observations:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

We would like to make a statement independent of the input size.
What is a meaningful solution?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Observations regarding worst-case analysis:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

We would like to make a statement independent of the input size.
Solution: Asymptotic analysis

We consider the running time for large inputs.
A1 is considered better than A2 since A1 will beat A2 eventually.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.
Observations regarding asymptotic worst-case analysis:

It is difficult to count the number of operations at an extremely
fine level.
Asymptotic analysis means that we are interested only in the rate
of growth of the running time function w.r.t. the input size. For
example, note that the rates of growth of functions (n2 + 5n + 1)
and (n2 + 2n + 5) is determined by the n2 (quadratic) term. The
lower order terms are insignificant. So, we may as well drop them.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.
Observations regarding asymptotic worst-case analysis:

It is difficult to count the number of operations at an extremely
fine level and keep track of these constants.
Asymptotic analysis means that we are interested only in the rate
of growth of the running time function w.r.t. the input size. For
example, note that the rates of growth of functions (n2 + 5n + 1)
and (n2 + 2n + 5) is determined by the n2 (quadratic) term. The
lower order terms are insignificant. So, we may as well drop them.
The nature of growth rate of functions 2n2 and 5n2 are the same.
Both are quadratic functions. It makes sense to drop these
constants too when one is interested in the nature of the growth
functions.
We need a notation to capture the above ideas.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
Show that: 8n + 5 = O(n).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
Show that: 8n + 5 = O(n).

For constants c = 13 and n0 = 1,we show that
∀n ≥ n0, 8n+ 5 ≤ 13 ·n. So, by definition of big-O, 8n+ 5 = O(n).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
g(n) may be interpreted as an upper bound on f (n).
Show that: 8n + 5 = O(n).
Is this true 8n + 5 = O(n2)?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
g(n) may be interpreted as an upper bound on f (n).
Show that: 8n + 5 = O(n).
Is this true 8n + 5 = O(n2)? Yes
g(n) may be interpreted as an upper bound on f (n).
How do we capture lower bound?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-Omega)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Ω(g(n)) (or f (n) = Ω(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≥ c · g(n)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms


