COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Introduction

- Data Structure: Systematic way of organising and accessing data.
- Algorithm: A step-by-step procedure for performing some task.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.

Example

FindPositiveSum (A, n)	
\quad - sum $\leftarrow 0$	$[1$ assignment $]$
- For $i=1$ to n	$[1$ assignment +1 comparison +1 arithmetic]*n
$\quad-$ if $(A[i]>0)$ sum \leftarrow sum $+A[i]$	$[1 \text { assignment }+1 \text { arithmetic }+1 \text { comparison }]^{*} n$
$-\operatorname{return}($ sum $)$	$[1$ return $]$
	Total: $6 n+2$

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Few observations:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Few observations:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)
- We would like to make a statement independent of the input size. What is a meaningful solution?

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Observations regarding worst-case analysis:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)
- We would like to make a statement independent of the input size.
- Solution: Asymptotic analysis
- We consider the running time for large inputs.
- A1 is considered better than A2 since A1 will beat A2 eventually.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.
- Observations regarding asymptotic worst-case analysis:
- It is difficult to count the number of operations at an extremely fine level.
- Asymptotic analysis means that we are interested only in the rate of growth of the running time function w.r.t. the input size. For example, note that the rates of growth of functions $\left(n^{2}+5 n+1\right)$ and $\left(n^{2}+2 n+5\right)$ is determined by the n^{2} (quadratic) term. The lower order terms are insignificant. So, we may as well drop them.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.
- Observations regarding asymptotic worst-case analysis:
- It is difficult to count the number of operations at an extremely fine level and keep track of these constants.
- Asymptotic analysis means that we are interested only in the rate of growth of the running time function w.r.t. the input size. For example, note that the rates of growth of functions $\left(n^{2}+5 n+1\right)$ and $\left(n^{2}+2 n+5\right)$ is determined by the n^{2} (quadratic) term. The lower order terms are insignificant. So, we may as well drop them.
- The nature of growth rate of functions $2 n^{2}$ and $5 n^{2}$ are the same. Both are quadratic functions. It makes sense to drop these constants too when one is interested in the nature of the growth functions.
- We need a notation to capture the above ideas.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.
- For constants $c=13$ and $n_{0}=1$, we show that
$\forall n \geq n_{0}, 8 n+5 \leq 13 \cdot n$. So, by definition of big-O, $8 n+5=O(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$?

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$? Yes
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- How do we capture lower bound?

Introduction

Big-O Notation

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

End

