
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Data Structure: Systematic way of organising and accessing
data.

Algorithm: A step-by-step procedure for performing some
task.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.
2 It should run fast.

How do we argue that an algorithm is correct?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we argue that an algorithm is correct?
Proof of correctness: An argument that the algorithm works
correctly for all inputs.

Proof: A valid argument that establishes the truth of a
mathematical statement.

Consider the following algorithm that is supposed to output
the sum of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum← 0
- for i = 1 to n

- sum← sum + A[i ]
- return(sum)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we argue that an algorithm is correct?
Proof of correctness: An argument that the algorithm works correctly
for all inputs.

Proof: A valid argument that establishes the truth of a mathematical
statement.

Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum← 0
- for i = 1 to n

- sum← sum + A[i ]
- return(sum)

To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the i th iteration, the variable sum contains the
sum of first i elements of the array A.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we argue that an algorithm is correct?
Proof of correctness: An argument that the algorithm works correctly
for all inputs.

Proof: A valid argument that establishes the truth of a mathematical
statement.

Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum← 0
- for i = 1 to n

- sum← sum + A[i ]
- return(sum)

To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the i th iteration, the variable sum contains the
sum of first i elements of the array A.
How do we prove statements of the form ∀i ,P(i)?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we argue that an algorithm is correct?
Proof of correctness: An argument that the algorithm works correctly
for all inputs.

Proof: A valid argument that establishes the truth of a mathematical
statement.

Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum← 0
- for i = 1 to n

- sum← sum + A[i ]
- return(sum)

To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the i th iteration, the variable sum contains the
sum of first i elements of the array A.
How do we prove statements of the form ∀i ,P(i)?Induction

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Proof: A valid argument that establishes the truth of a
mathematical statement.

The statements used in a proof can include axioms, definitions,
the premises, if any, of the theorem, and previously proven
theorems and uses rules of inference to draw conclusions.

A proof technique very commonly used when proving
correctness of Algorithms is Mathematical Induction.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a
propositional function, we complete two steps:

Basis step: We show that P(1) is true.

Inductive step: We show that for all k , if P(1),P(2), ...,P(k)
are true, then P(k + 1) is true.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a
propositional function, we complete two steps:

Basis step: We show that P(1) is true.

Inductive step: We show that for all k , if P(1),P(2), ...,P(k)
are true, then P(k + 1) is true.

Question: Show that for all n > 0, 1 + 3 + ... + (2n− 1) = n2.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Question: Show that for all n > 0, 1 + 3 + ... + (2n − 1) = n2.

Proof

Let P(n) be the proposition that 1 + 3 + 5 + ... + (2n − 1) equals n2.
Basis step: P(1) is true since the summation consists of only a single
term 1 and 12 = 1.
Inductive step: Assume that P(1),P(2), ...,P(k) are true for any
arbitrary integer k . Then we have:

1 + 3 + ... + (2(k + 1)− 1) = 1 + 3 + ... + (2k − 1) + (2k + 1)

= k2 + 2k + 1 (since P(k) is true)

= (k + 1)2

This shows that P(k + 1) is true.
Using the principle of Induction, we conclude that P(n) is true for all
n > 0.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Idea#1: Implement them on some platform, run and check.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Idea#1: Implement them on some platform, run and check.
The speed of programs P1 (implementation of A1) and P2
(implementation of A2) may depend on various factors:

Input
Hardware platform
Software platform
Quality of the underlying algorithm

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Idea#1: Implement them on some platform, run and check.

Let P1 denote implementation of A1 and P2 denote
implementation of A2.

Issues with Idea#1:

If P1 and P2 are run on different platforms, then the
performance results are incomparable.
Even if P1 and P2 are run on the same platform, it does not
tell us how A1 and A2 compare on some other platform.
There might be infinitely many inputs to compare the
performance on.
Extra burden of implementing both algorithms where what we
wanted was to first figure out which one is better and then
implement just that one.

So, what we need is a platform independent way of comparing
algorithms.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform independent way of comparing
algorithms.

Solution:

Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.
For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.
We will assume that the amount of time required to execute
these basic operations is at most some constant T which is
independent of the input size.
The running time of the algorithm will be at most (b · T ).

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform independent way of comparing
algorithms.

Solution:

Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.
For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.
We will assume that the amount of time required to execute
these basic operations is at most some constant T which is
independent of the input size.
The running time of the algorithm will be at most (b · T ).
But, what about other inputs? We are interested in
measuring the performance of an algorithm and not
performance of an algorithm on a given input.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0) sum← sum + A[i ]
- return(sum)

Note that the number of operations grow with the array size n.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0)sum← sum + A[i ]
- return(sum)

Note that the number of operations grow with the array size n.
Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0)sum← sum + A[i ]
- return(sum)

Note that the number of operations grow with the array size n.
Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.
For inputs of size n, we will count the number of operations in
the worst-case. That is, the number of operations for the
worst-case input of size n.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform independent way of comparing
algorithms.

Solution: Count the worst-case number of basic operations
b(n) for inputs of size n and then analyse how this function
b(n) behaves as n grows. This is known as worst-case analysis.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms


