COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

- <u>Data Structure</u>: Systematic way of organising and accessing data.
- Algorithm: A step-by-step procedure for performing some task.

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - **1** It should be correct.
 - It should run fast.
- How do we argue that an algorithm is correct?

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

FindSum(A, n)

- $sum \leftarrow 0$
- for i = 1 to n
 - $sum \leftarrow sum + A[i]$
- return(sum)

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the *i*th iteration, the variable *sum* contains the sum of first *i* elements of the array *A*.

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

```
FindSum(A, n)
```

- $sum \leftarrow 0$

```
- for i = 1 to n
```

```
- sum \leftarrow sum + A[i]
```

- return(sum)

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first *i* elements of the array *A*.

• How do we prove statements of the form $\forall i, P(i)$?

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

```
FindSum(A, n)
```

- $sum \leftarrow 0$

```
- for i = 1 to n
```

```
- sum \leftarrow sum + A[i]
```

- return(sum)

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first *i* elements of the array *A*.

How do we prove statements of the form ∀i, P(i)?Induction

E + 4 E + 1

э

- <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
 - The statements used in a proof can include axioms, definitions, the premises, if any, of the theorem, and previously proven theorems and uses rules of inference to draw conclusions.
- A proof technique very commonly used when proving correctness of Algorithms is *Mathematical Induction*.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.
- <u>Question</u>: Show that for all n > 0, $1 + 3 + ... + (2n 1) = n^2$.

• Question: Show that for all n > 0, $1 + 3 + ... + (2n - 1) = n^2$.

Proof

- Let P(n) be the proposition that 1 + 3 + 5 + ... + (2n 1) equals n^2 .
- Basis step: P(1) is true since the summation consists of only a single term 1 and $1^2 = 1$.
- Inductive step: Assume that P(1), P(2), ..., P(k) are true for any arbitrary integer k. Then we have:

$$1+3+\ldots+(2(k+1)-1) = 1+3+\ldots+(2k-1)+(2k+1)$$

= k^2+2k+1 (since $P(k)$ is true)
= $(k+1)^2$

This shows that P(k+1) is true.

Using the principle of Induction, we conclude that P(n) is true for all n > 0.

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - We use proof of correctness to argue correctness.
 - It should run fast.

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - We use proof of correctness to argue correctness.

It should run fast.

• Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.

伺 ト イヨト イヨト

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.
 - The speed of programs P1 (implementation of A1) and P2 (implementation of A2) may depend on various factors:
 - Input
 - Hardware platform
 - Software platform
 - Quality of the underlying algorithm

同 ト イ ヨ ト イ ヨ

- Idea#1: Implement them on some platform, run and check.
- Let P1 denote implementation of A1 and P2 denote implementation of A2.
- Issues with Idea#1:
 - If P1 and P2 are run on different platforms, then the performance results are incomparable.
 - Even if P1 and P2 are run on the same platform, it does not tell us how A1 and A2 compare on some other platform.
 - There might be infinitely many inputs to compare the performance on.
 - Extra burden of implementing *both* algorithms where what we wanted was to first figure out which one is better and then implement just that one.
- So, what we need is a platform independent way of comparing algorithms.

伺 ト イヨト イヨト

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution:
 - Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
 - For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is *b*.
 - We will assume that the amount of time required to execute these basic operations is at most some constant *T* which is independent of the input size.
 - The running time of the algorithm will be at most $(b \cdot T)$.

向下 イヨト イヨト

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution:
 - Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
 - For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is *b*.
 - We will assume that the amount of time required to execute these basic operations is at most some constant *T* which is independent of the input size.
 - The running time of the algorithm will be at most $(b \cdot T)$.
 - But, what about other inputs? We are interested in measuring the performance of an algorithm and not performance of an algorithm on a given input.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the number of basic operations.
 - How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)

- $sum \leftarrow 0$
- For i = 1 to n
 - if (A[i] > 0) sum \leftarrow sum + A[i]
- return(sum)
- Note that the number of operations grow with the array size *n*.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the number of basic operations.
 - How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)

- $sum \leftarrow 0$
- For i = 1 to n
 - if (A[i] > 0)sum \leftarrow sum + A[i]

- return(sum)

- Note that the number of operations grow with the array size *n*.
- Even for all arrays of a fixed size *n*, the number of operations may vary depending on the numbers present in the array.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- <u>Solution</u>: Count the number of basic operations.
 - How do we measure performance for all inputs?

Example

```
FindPositiveSum(A, n)
```

- $sum \leftarrow 0$

```
- For i = 1 to n
```

```
- if (A[i] > 0)sum \leftarrow sum + A[i]
```

- return(sum)
- Note that the number of operations grow with the array size *n*.
- Even for all arrays of a fixed size *n*, the number of operations may vary depending on the numbers present in the array.
- For inputs of size *n*, we will count the number of operations in the worst-case. That is, the number of operations for the worst-case input of size *n*.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- <u>Solution</u>: Count the worst-case number of basic operations b(n) for inputs of size n and then analyse how this function b(n) behaves as n grows. This is known as worst-case analysis.

End

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms

<ロ> <部> <部> <き> <き> <

æ