COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms

-∰ ► < ≣ ►

・ロト ・部ト ・ヨト ・ヨト

э

• Course Instructor:

- Ragesh Jaiswal
- Email: rjaiswal@cse.iitd.ac.in
- Office: SIT 403
- Course Time/Place:
 - Lectures:
 - Tue, Thu, Fri 11-12, LH 111
- Teaching Assistants:
 - TBD

- Grading Scheme
 - **1** Homework (programming): 20%
 - **2** *Quizzes*: 20% (weekly)
 - *Minor*: 30% (two minors 15% each)
 - 4 Major: 30%
- Homework and Quizzes:
 - Schedule for completion date of homework is posted on the course page. Homework will not be graded.
 - **However**, there will be a quiz every week on the material given in the homework for the past week.
 - Gradescope: A paperless grading system. Use the course code **9Z547M** to register. Please use your formal email address from IIT Delhi.
- Policy on cheating: Students using unfair means will be severely penalised.

- <u>Textbooks</u>: I will be following this book very closely. So, it will be a good idea to get a copy of this book.
 - Data Structures and Algorithms in Java by Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser.
- Other reference books:
 - Introduction to Algorithms by *Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.*
- Course webpage:

http://www.cse.iitd.ac.in/~rjaiswal/2017/COL106/.

• The site will contain course information, references, homework, course slides etc. Please check this page regularly.

• Programming language: Java

- You are expected to be comfortable with the first two chapters of the Textbook. These chapters are introductions to Basic Java Programming and Object Oriented Programming.
- There is a java module on the course page. You are expected to go through this on your own.
- There will be a quiz based on the java module (*first three sessions only*).

Data Structures and Algorithms

3 k 3

∂ ► < E

- <u>Data Structure</u>: Systematic way of organising and accessing data.
- Algorithm: A step-by-step procedure for performing some task.

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.

向下 イヨト イヨト

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

伺下 イヨト イヨト

Introduction

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin(A, n)

- $min \leftarrow A[1]$
- for i = 2 to n

- **if**
$$(A[i] < min)$$

-
$$min \leftarrow A[i]$$

- return(min)

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin(A, n)

- $min \leftarrow A[1]$
- for i = 2 to n
 - if A[i] is smaller than min

-
$$min \leftarrow A[i]$$

- return(min)

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?

→ Ξ →

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - It should run fast.
 - It should take small amount of space (RAM).
 - It should consume small amount of power.
 - •

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - **1** It should be correct.
 - It should run fast.
- How do we argue that an algorithm is correct?

End

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms

<ロ> <部> <部> <き> <き> <

æ

990