
COL106: Data Structures and Algorithms (IIT Delhi, Semester-II-2016-17) Minor-1

Name:

Entry number:

There are 4 questions for a total of 15 points.

1. Answer the following:

(a) (1/2 point) State true or false: Let f(n) = 5n2n + 3n and g(n) = n3n. Then f(n) = O(g(n)).

(a) True

(b) (1/2 point) State true or false: Let f(n) = 5n2n + 3n and g(n) = n3n. Then g(n) = O(f(n)).

(b) False

(c) (1/2 point) Express the running time of the algorithm below in big-O notation.

Alg2(A,n)

- for i = 1 to n

- for j = 2i to n

- A[i]← A[j] + 1

(c) O(n2)

(d) (1 1/2 points) Solve the following recurrence relation and write the exact value of T (n). Show
calculations.

T (n) = 2 · T (n/2) + n2; T (1) = 1 (assume n is a power of 2)

(d) T (n) = 2n2 − n

Solution:

T (n) = 2 · T (n/2) + n2

= 2 · (2 · T (n/22) + (n/2)2) + n2

= 22 · T (n/22) + n2 · (1 + 1/2)

...

= 2i · T (n/2i) + n2 · (1 + 1/2 + ... + 1/2i−1)

...

= 2logn · T (n/2logn) + n2 · (1 + 1/2 + ... + 1/2logn−1)

= n · T (1) + n2 · 1− 1/n

1− 1/2

= n + 2n(n− 1)

= 2n2 − n



COL106: Data Structures and Algorithms (IIT Delhi, Semester-II-2016-17) Minor-1

2. (4 points) Solve the following recurrence relation and write the exact value of T (n).

T (n) =


T (n− 1) if n > 1 and n is odd

2 · T (n/2) if n > 1 and n is even

1 if n = 1

2. T (n) = 2blognc

(Hint: Unrolling may be tricky. You may want to guess the bound and then use induction to confirm
your guess.)

Solution: The answer follows from the following claim.

Claim: For all k ≥ 0, the following holds: For all 2k ≤ n < 2k+1, T (n) = 2k.

Proof. We show this by induction on k. Let P (k) denote the given proposition in the claim. We
need to show that ∀k, P (k) is true.

Base step: Base case is trivially true since T (1) = 1.

Inductive step: Suppose P (1), P (2), ..., P (i) are true. We will show that P (i + 1) is true. Consider

any 2i+1 ≤ n < 2i+2. We need to consider the case when n is even and n is odd.

If n is odd, then T (n) = T (n − 1) = 2 · T (n−1
2 ). Note that 2i+1 ≤ n − 1 < 2i+2. So, we have

2i ≤ (n− 1)/2 < 2i+1. Applying induction hypothesis, we get T (n) = 2i+1.

If n is even, then T (n) = 2 · T (n/2). Since 2i+1 ≤ n < 2i+2, we have 2i ≤ n/2 < 2i+1. Applying
induction hypothesis, we get that T (n) = 2i+1.

Page 2



COL106: Data Structures and Algorithms (IIT Delhi, Semester-II-2016-17) Minor-1

3. (4 points) In the lecture, we saw an implementation of Dynamic Arrays using regular arrays involving
doubling the size of the array on overflows. What is the amortized running time for insert operations
for the implementation where we increase the size of the array by 42 on overflows. That is, if the size
of the array before overflow was m, then the size of the array after overflow is m + 42. Also, you may
assume that we start with an empty array of size 1.

Solution: Starting from an empty array of size 1, consider n insertions. We can break down the
running time into time for copying when an overflow occurs and time for inserting into the array.
Note that the total time for insertion is going to be n since n elements are being inserted. Let us
now focus on the time for copies.

Every time the current array overflows, we need to copy. The time for this copying is equal to the
size of the array when the overflow occurs. The first time the array overflows, size of the array is
1. The second time the array overflows, size of the array is (1 + 42). The third time the array
overflows, size of the array is (1 + 42 + 42). So, the ith time the array overflows, the size of the array
is (1 + 42 · (i− 1)). Suppose k is the number of times the array overflows on n insertions. Then we
have

1 + 42(k − 1) ≤ n < 1 + 42k

This gives k = bn−142 c. So, the total cost of copying is

k∑
i=1

1 + 42(i− 1) = k + 42 · k(k − 1)

2
≤ n− 1

42
+

(n− 1) · (n− 43)

2 · 42
= O(n2).

So, the asymptotic running time for insert operation is O(n).

Page 3



COL106: Data Structures and Algorithms (IIT Delhi, Semester-II-2016-17) Minor-1

4. (4 points) Consider the following basic java implementation of linked list that we have used in the
lecture. Complete the body of the method SortList below that is supposed to sort the integers in the
linked list in non-decreasing order. It will be sufficient to give an O(n2)-time algorithm for this problem.
You are NOT allowed to use arrays within this method.

class Node{
public int value;

public Node next;

}
class LinkedList{

public Node head;

public int size;

public LinkedList(){size=0; head = null;}
//other methods

...

//Implementation of Bubble Sort

public void SortList(){
Node N;

for(int i=0;i<size-1;++i){
N = head;

for(int j=0;j<size - i - 1;++j){
if(N.value > N.next.value){

int x = N.value;

N.value = N.next.value;

N.next.value = x;

}
N = N.next;

}
}

}
}

Page 4


