COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Computational Intractability: NP-complete problems

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING $\in N P$

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP
- Claim 3: SUBSET-SUM \leq_{p} SCHEDULING

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP
- Claim 3: SUBSET-SUM \leq_{p} SCHEDULING

Proof sketch for Claim 3

Given an instance of the subset sum problem $\left(\left\{w_{1}, \ldots, w_{n}\right\}, W\right)$, we construct the following instance of the Scheduling problem:
$\left(\left(0, w_{1}, S+1\right), \ldots,\left(0, w_{n}, S+1\right),(W, 1, W+1)\right)$. We then argue that there is a subset that sums to W if and only if the $(n+1)$ jobs can be scheduled. Here $S=w_{1}+\ldots+w_{n}$.

Computational Intractability

Many-one reduction

- Most of the polynomial-time reductions $X \leq_{p} Y$ that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Computational Intractability

Many-one reduction

- Most of the polynomial-time reductions $X \leq_{p} Y$ that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Many-one reduction

In order to show that $X \leq_{p} Y$ we design an efficient mapping f from the set of instances of X to set of instances of Y such that $s \in X$ iff $f(s) \in Y$.

Computational Intractability

NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

Figure: Let $T=\{(a, x, p),(a, y, p),(b, y, q),(c, z, r)\}$. Does there exist a 3D-Matching?

Computational Intractability

NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.

Computational Intractability
 NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- Claim 2: 3D-MATCHING is NP-complete.

Computational Intractability
 NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- Claim 2: 3D-MATCHING is NP-complete.
- Claim 2.1: 3-SAT \leq_{p} 3D-MATCHING.
- Proof sketch of Claim 2.1: We will show an efficient many-one reduction.

Computational Intractability

NP-complete problems: 3D-Matching

Figure: Example construction for $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)$

Computational Intractability
 NP-complete problems: 3D-Matching

Elements from
the previous slide

Figure: Example construction for $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)$, $\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)$. k denotes the number of clauses.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.
- Claim 2.1: 3D-MATCHING \leq_{p} SUBSET-SUM.
- Proof sketch: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
- We first construct a $3 n$-bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$, we construct the following vector v_{i} :

1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.
- Claim 2.1: 3D-MATCHING \leq_{p} SUBSET-SUM.
- Proof sketch: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
- We first construct a $3 n$-bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$, we construct the following vector v_{i} :

1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

- Let w_{i} be the value of v_{i} in base $(|T|+1)$ and

$$
W=\sum_{i=0}^{3 n-1}(|T|+1)^{i}
$$

- Claim 2.1.1: There is a 3D-Matching iff there is a subset $\left\{w_{1}, \ldots, w_{|T|}\right\}$ that sums to W.

End

