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Computational Intractability
NP, NP-hard, NP-complete

@ We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.
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Computational Intractability
NP, NP-hard, NP-complete

o We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.

@ Polynomial-time reductions just give pair-wise relationships
between problems.

@ Is there a common theme that binds all these problems in one
computational class?
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Computational Intractability
NP, NP-hard, NP-complete

@ We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.

@ Polynomial-time reductions just give pair-wise relationships
between problems.

@ Is there a common theme that binds all these problems in one
computational class?

@ Let us try to extract a theme that is common to some of the
problems we saw:

o INDEPENDENT-SET: Given (G, k), determine if G has an
independent set of size at least k.

o VERTEX-COVER: Given (G, k), determine if G has a vertex
cover of size at most k.

o SAT: Given a Boolean formula Q in CNF, determine if the
formula is satisfiable.
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Computational Intractability
NP, NP-hard, NP-complete

@ Let us try to extract a theme that is common to some of the
problems we saw:
o INDEPENDENT-SET: Given (G, k), determine if G has an
independent set of size at least k.

o Suppose there is an independent set of size at least k and
someone gives such a subset as a certificate. Then we can
verify this certificate quickly.

o VERTEX-COVER: Given (G, k), determine if G has a vertex
cover of size at most k.

@ Suppose there is a vertex cover of size at most k and someone
gives such a subset as a certificate. Then we can verify this
certificate quickly.

o SAT: Given a Boolean formula Q in CNF, determine if the
formula is satisfiable.

@ Suppose the formula € is satisfiable and someone gives such a
satisfying assignment as a certificate. Then we can verify this
certificate quickly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Computational Intractability
NP, NP-hard, NP-complete

@ Problem encoding and algorithm:

e An instance of a problem can be encoded using a finite string
s.

e A decision problem X can be thought of as a set of strings on
which the answer is true (or 1).

o We say that an algorithm A solves a problem X if for all
strings s, A(s) =1 if and only if s is in X.

o We say that an algorithm A has a polynomial running time if
there is a polynomial p such that for every string s, A
terminates on input s in at most O(p(]s|)) steps.
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Computational Intractability
NP, NP-hard, NP-complete

o Efficient Certification:
o We say that algorithm B is an efficient certifier for a problem
X, iff the following holds:

e B is a polynomial time algorithm that takes two input string s
and t.

o There is a polynomial p such that for every string s, we have
s € X if and only if there exists a string t such that
|t < p(|s]) and B(s, t) = 1.
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Computational Intractability
NP, NP-hard, NP-complete

o Efficient Certification:
o We say that algorithm B is an efficient certifier for a problem
X, iff the following holds:

@ B is a polynomial time algorithm that takes two input string s
and t.

@ There is a polynomial p such that for every string s, we have
s € X if and only if there exists a string t such that
|t] < p(ls]) and B(s, t) = 1.

@ Note that B does not solve the problem but only verifies a
proposed solution.

@ Can we use B to solve the problem?
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o Efficient Certification:
o We say that algorithm B is an efficient certifier for a problem
X, if the following holds:

@ B is a polynomial time algorithm that takes two input string s
and t.

@ There is a polynomial p such that for every string s, we have
s € X if and only if there exists a string t such that
|t < p(Is]) and B(s, t) = 1.

@ Note that B does not solve the problem but only verifies a
proposed solution.

@ Can we use B to solve the problem? Yes

@ Can we use B to solve the problem efficiently?
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Computational Intractability
NP, NP-hard, NP-complete

o Efficient Certification:
o We say that algorithm B is an efficient certifier for a problem
X, if the following holds:
o B is a polynomial time algorithm that takes two input string s
and t.
o There is a polynomial p such that for every string s, we have
s € X if and only if there exists a string t such that
|t < p(|s]) and B(s, t) = 1.
@ Note that B does not solve the problem but only verifies a
proposed solution.
@ Can we use B to solve the problem? Yes

@ Can we use B to solve the problem efficiently?

Definition (NP)
A problem is said to be in NP iff there exists an efficient
certification algorithm for the problem.
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Computational Intractability
NP, NP-hard, NP-complete

o Efficient Certification:
o We say that algorithm B is an efficient certifier for a problem
X, if the following holds:

@ B is a polynomial time algorithm that takes two input string s
and t.

o There is a polynomial p such that for every string s, we have
s € X if and only if there exists a string t such that
|t < p(Is]) and B(s, t) = 1.

Definition (NP)
A problem is said to be in NP iff there exists an efficient
certification algorithm for the problem.

@ NP stands for Non-deterministic Polynomial time.
o Non-deterministic algorithms are allowed to make
non-deterministic choices (guesswork). Such algorithms can
guess the certificate t for an instance s.
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Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)
A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

@ Theorem: P C NP.
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Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)
A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

@ Theorem: P C NP.
o Claim 1: INDEPENDENT-SET € NP
o Proof sketch: The certificate is an independent set of size at least
k. The certifier checks if the given set if indeed an independent set
of size at least k.
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1

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)
A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

@ Theorem: P C NP.
o Claim 1: INDEPENDENT-SET € NP
o Proof sketch: The certificate is an independent set of size at least
k. The certifier checks if the given set if indeed an independent set
of size at least k.
o Claim 2: SAT € NP
o Proof sketch: The certificate is a satisfying assignment.The
certifier checks if the assignment makes all clauses true.
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Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)
A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

@ Theorem: P C NP.
o Is P =NP?
@ What are the hardest problems in NP?
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Computational Intractability
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Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)
A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P C NP.

Is P = NP?

What are the hardest problems in NP?

A problem X € NP is the hardest problem in NP if for all
problems Y € NP, Y <, X.

Such problems are called NP-complete problems.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

O X e NP.

@ Forall Y e NP, Y <, X.
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Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

@ X e NP.
@ Forall Y e NP, Y <, X.

@ How do we show that there is a problem that is NP-complete?
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

y

Definition (NP-complete)
A problem X is said to be NP-complete iff the following two properties
hold:

@ X € NP.
@ Forall Y NP, Y <, X,

@ How do we show that there is a problem that is NP-complete?
@ Suppose by some magic we have shown that SAT is NP-complete,
does that mean that there are more NP-complete problems?
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

A problem X is said to be NP-complete iff the following two properties
hold:

@ X € NP.

@ Forall Y eNP, Y <, X.

A\

Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.
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Computational Intractability
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Definition (NP-complete)
A problem X is said to be NP-complete iff the following two properties
hold:

@ X € NP.
@ Forall Y e NP, Y <, X.

Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.

Proof sketch

o Claim 1: CIRCUIT-SAT is NP-complete.
o Claim 2: CIRCUIT-SAT <, 3-SAT.
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Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.

Proof sketch

o Claim 1: CIRCUIT-SAT is NP-complete.
o Claim 2: CIRCUIT-SAT <, 3-SAT.

o Circuit: A directed acyclic graph where each node is either:

o Constant nodes: Labeled 0/1
o Input nodes: These denote the variables
o Gates: AND, OR, and NOT

There is a single output node.
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Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.

Proof sketch

o Claim 1: CIRCUIT-SAT is NP-complete.
o Claim 2: CIRCUIT-SAT <, 3-SAT.

o Circuit: A directed acyclic graph where each node is either:

o Constant nodes: Labeled 0/1
o Input nodes: These denote the variables
o Gates: AND, OR, and NOT

There is a single output node.

Problem

CIRCUIT-SAT: Given a circuit, determine if there is an input such
that the output of the circuit is 1.
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Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.

Proof sketch

o Claim 1: CIRCUIT-SAT is NP-complete.
o Fact: For every algorithm that runs in time polynomial in the input
size n, there is an equivalent circuit of size polynomial in n.
o Given an input instance s of any NP problem X, consider the
equivalent circuit for the efficient certifier of X. The input gates of
this circuit has s and t.
o s € X if and only if this circuit is satisfiable.
o Claim 2: CIRCUIT-SAT <, 3-SAT.

o For any circuit, we can write an equivalent 3-SAT formula.

V.

Problem
CIRCUIT-SAT: Given a circuit, determine if there is an input such
that the output of the circuit is 1.
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