COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Computational Intractability

- Polynomial-time reduction:
 - Consider two problems X and Y.
 - Suppose there is a *black box* that solves arbitrary instances of problem *X*.
 - Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
 - If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_p X$.

Computational Intractability

Polynomial-time reduction

Problem

<u>DEG-3-INDEPENDENT-SET</u>: Given a graph G = (V, E) of bounded degree 3 (*i.e.*, all vertices have degree \leq 3) and an integer k, check if there is an independent set of size at least k in G.

• Claim 1: INDEPENDENT-SET \leq_p DEG-3-INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

Problem

<u>DEG-3-INDEPENDENT-SET</u>: Given a graph G = (V, E) of bounded degree 3 (*i.e.*, all vertices have degree \leq 3) and an integer k, check if there is an independent set of size at least k in G.

<u>Claim 1</u>: INDEPENDENT-SET ≤_p DEG-3-INDEPENDENT-SET
 <u>Idea</u>: "Split" all vertices.

<u>Claim 1</u>: INDEPENDENT-SET ≤_p DEG-3-INDEPENDENT-SET

Proof of Claim 1

- Consider graph G' constructed by "splitting" a vertex of G.
- <u>Claim 1.1</u>: G has an independent set of size at least k if and only if G' has an independent set of size at least (k + 1).

<u>SET-COVER</u>: Given a set U of n elements, a collection $S_1, ..., S_m$ of subsets of U, and an integer k, determine if there exist a collection of at most k of these sets whose union is equal to U.

<u>SET-COVER</u>: Given a set *U* of *n* elements, a collection $S_1, ..., S_m$ of subsets of *U*, and an integer *k*, determine if there exist a collection of at most *k* of these sets whose union is equal to *U*.

• <u>Claim 1</u>: VERTEX-COVER \leq_p SET-COVER.

Computational Intractability Polynomial-time reduction

Definition

- Boolean variables: 0-1 (true/false) variables.
- <u>Term</u>: A variable or its negation is called a term.
- <u>Clause</u>: Disjunction of terms (e.g., $(x_1 \lor \bar{x}_2 \lor x_3))$
- Assignment: Fixing 0-1 values for each variables.
- Satisfying assignment: An assignment of variables is called a satisfying assignment for a collection of clauses if all clauses evaluate to 1 (true).

• For example, $(x_1 \lor \bar{x}_2), (x_2 \lor \bar{x}_3), (x_3 \lor \bar{x}_1)$

Problem

<u>SAT</u>: Given a set of clauses $C_1, ..., C_m$ over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

<u>SAT</u>: Given a set of clauses $C_1, ..., C_m$ over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

Problem

<u>3-SAT</u>: Given a set of clauses $C_1, ..., C_m$ each of length at most 3, over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

<u>SAT</u>: Given a set of clauses $C_1, ..., C_m$ over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

Problem

<u>3-SAT</u>: Given a set of clauses $C_1, ..., C_m$ each of length at most 3, over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

• Claim 1: SAT \leq_p 3-SAT

<u>SAT</u>: Given a set of clauses $C_1, ..., C_m$ over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

Problem

<u>3-SAT</u>: Given a set of clauses $C_1, ..., C_m$ each of length at most 3, over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

• <u>Claim 1</u>: SAT \leq_p 3-SAT

• Main idea: $(t_1 \lor t_2 \lor t_3 \lor t_4) \equiv ((t_1 \lor t_2 \lor z), (z \equiv t_3 \lor t_4))$

<u>3-SAT</u>: Given a set of clauses $C_1, ..., C_m$ each of length at most 3, over a set of variables $x_1, ..., x_n$ determine if there exists a satisfying assignment.

Problem

<u>INDEPENDENT-SET</u>: Given a graph G = (V, E) and an integer k, check if there is an independent set of size at least k in G.

• Claim 1: 3-SAT \leq_p INDEPENDENT-SET

• Claim 1: 3-SAT \leq_p INDEPENDENT-SET

Proof sketch of Claim 1

- Given an instance of the 3-SAT problem (C₁, ..., C_m), we will construct an instance (G, m) of the INDEPENDENT-SET problem.
- We will then show that $(C_1, ..., C_m)$ has a satisfying assignment if and only if G has an independent set of size at least m.
- Consider an example construction:
 - 3-SAT instance:
 - $(x_1 \lor x_2 \lor \overline{x_3}), (x_1 \lor \overline{x_2} \lor x_3), (\overline{x_1} \lor x_2 \lor x_3), (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$
 - INDEPENDENT-SET instance (G, m) for the above shown below:

4 B 6 4 B

Computational Intractability Polynomial-time reduction

• Claim 1: 3-SAT \leq_p INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
 - 3-SAT instance:
 - $(x_1 \lor x_2 \lor \overline{x}_3), (x_1 \lor \overline{x}_2 \lor x_3), (\overline{x}_1 \lor x_2 \lor x_3), (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$
 - INDEPENDENT-SET instance (G, m) for the above shown below:
 - <u>Claim 1.1</u>: If (C₁, C₂, C₃, C₄) has a satisfying assignment, then G has an independent set of size 4.

• Claim 1: 3-SAT \leq_p INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
 - 3-SAT instance: $(x_1 \lor x_2 \lor \bar{x_3}), (x_1 \lor \bar{x_2} \lor x_3), (\bar{x_1} \lor x_2 \lor x_3), (\bar{x_1} \lor \bar{x_2} \lor \bar{x_3})$
 - INDEPENDENT-SET instance (G, m) for the above shown below:
 - <u>Claim 1.1</u>: If (C₁, C₂, C₃, C₄) has a satisfying assignment, then G has an independent set of size 4.
 - Claim 1.2: If G has an independent set of size 4, then (C_1, C_2, C_3, C_4) has a satisfying assignment.

• <u>Claim 1</u>: 3-SAT \leq_p INDEPENDENT-SET

• Claim 2: SAT \leq_p INDEPENDENT-SET

→ 3 → 4 3

<u>Claim 1</u>: 3-SAT ≤_p INDEPENDENT-SET <u>Claim 2</u>: SAT ≤_p INDEPENDENT-SET Since SAT ≤_p 3-SAT ≤_p INDEPENDENT-SET

• Claim 1: 3-SAT \leq_p INDEPENDENT-SET

<u>Claim 2</u>: SAT ≤_p INDEPENDENT-SET Since SAT ≤_p 3-SAT ≤_p INDEPENDENT-SET

• <u>Claim 3</u>: SAT \leq_p SET-COVER

.

- Claim 1: 3-SAT \leq_p INDEPENDENT-SET
- <u>Claim 2</u>: SAT ≤_p INDEPENDENT-SET
 Since SAT ≤_p 3-SAT ≤_p INDEPENDENT-SET
- Claim 3: SAT \leq_p SET-COVER
 - Since SAT $\leq_p 3$ -SAT $\leq_p INDEPENDENT$ -SET $\leq_p VERTEX$ -COVER $\leq_p SET$ -COVER

• • = • • = •

Computational Intractability: NP and NP-complete

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

• We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.

3 N

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?

Computational Intractability NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?
- Let us try to extract a theme that is common to some of the problems we saw:
 - <u>INDEPENDENT-SET</u>: Given (G, k), determine if G has an independent set of size at least k.
 - <u>VERTEX-COVER</u>: Given (*G*, *k*), determine if *G* has a vertex cover of size at most *k*.
 - <u>SAT</u>: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.

- Let us try to extract a theme that is common to some of the problems we saw:
 - INDEPENDENT-SET: Given (G, k), determine if G has an independent set of size at least k.
 - Suppose there is an independent set of size at least *k* and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
 - <u>VERTEX-COVER</u>: Given (G, k), determine if G has a vertex cover of size at most k.
 - Suppose there is a vertex cover of size at most *k* and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
 - <u>SAT</u>: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.
 - Suppose the formula Ω is satisfiable and someone gives such a satisfying assignment as a certificate. Then we can verify this certificate quickly.

< ロ > < 同 > < 三 > < 三 >

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590