COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Computational Intractability

Computational Intractability
 Polynomial-time reduction

- Polynomial-time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
- If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_{p} X$.

Computational Intractability

Polynomial-time reduction
Problem
DEG-3-INDEPENDENT-SET: Given a graph $G=(V, E)$ of bounded degree 3 (i.e., all vertices have degree ≤ 3) and an integer k, check if there is an independent set of size at least k in G.

- Claim 1: INDEPENDENT-SET \leq_{p} DEG-3-INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

Problem

DEG-3-INDEPENDENT-SET: Given a graph $G=(V, E)$ of bounded degree 3 (i.e., all vertices have degree ≤ 3) and an integer k, check if there is an independent set of size at least k in G.

- Claim 1: INDEPENDENT-SET \leq_{p} DEG-3-INDEPENDENT-SET - Idea: "Split" all vertices.

Computational Intractability

Polynomial-time reduction

- Claim 1: INDEPENDENT-SET \leq_{p} DEG-3-INDEPENDENT-SET

Proof of Claim 1

- Consider graph G^{\prime} constructed by "splitting" a vertex of G.
- Claim 1.1: G has an independent set of size at least k if and only if G^{\prime} has an independent set of size at least $(k+1)$.

Computational Intractability

Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, determine if there exist a collection of at most k of these sets whose union is equal to U.

Computational Intractability

Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, determine if there exist a collection of at most k of these sets whose union is equal to U.

- Claim 1: VERTEX-COVER \leq_{p} SET-COVER.

Computational Intractability

Polynomial-time reduction

Definition

- Boolean variables: 0-1 (true/false) variables.
- Term: A variable or its negation is called a term.
- Clause: Disjunction of terms (e.g., $\left.\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\right)$
- Assignment: Fixing 0-1 values for each variables.
- Satisfying assignment: An assignment of variables is called a satisfying assignment for a collection of clauses if all clauses evaluate to 1 (true).
- For example, $\left(x_{1} \vee \bar{x}_{2}\right),\left(x_{2} \vee \bar{x}_{3}\right),\left(x_{3} \vee \bar{x}_{1}\right)$

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

- Claim 1: SAT $\leq_{p} 3-S A T$

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

- Claim 1: SAT $\leq_{p} 3-$ SAT
- Main idea: $\left(t_{1} \vee t_{2} \vee t_{3} \vee t_{4}\right) \equiv\left(\left(t_{1} \vee t_{2} \vee z\right),\left(z \equiv t_{3} \vee t_{4}\right)\right)$

Computational Intractability

Polynomial-time reduction

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

- Claim 1: $3-$ SAT \leq_{p} INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Given an instance of the 3-SAT problem $\left(C_{1}, \ldots, C_{m}\right)$, we will construct an instance (G, m) of the INDEPENDENT-SET problem.
- We will then show that $\left(C_{1}, \ldots, C_{m}\right)$ has a satisfying assignment if and only if G has an independent set of size at least m.
- Consider an example construction:
- 3-SAT instance:
$\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$
- INDEPENDENT-SET instance (G, m) for the above shown below:

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
- 3-SAT instance:

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- INDEPENDENT-SET instance (G, m) for the above shown below:
- Claim 1.1: If $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment, then G has an independent set of size 4.

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
- 3-SAT instance:

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- INDEPENDENT-SET instance (G, m) for the above shown below:
- Claim 1.1: If $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment, then G has an independent set of size 4.
- Claim 1.2: If G has an independent set of size 4 , then $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment.

Computational Intractability

- Claim 1: 3-SAT \leq_{p} INDEPENDENT-SET
- Claim 2: SAT \leq_{p} INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

- Claim 1: 3-SAT \leq_{p} INDEPENDENT-SET
- Claim 2: SAT \leq_{p} INDEPENDENT-SET
- Since SAT $\leq_{p} 3$-SAT \leq_{p} INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

- Claim 1: 3-SAT \leq_{p} INDEPENDENT-SET
- Claim 2: SAT \leq_{p} INDEPENDENT-SET
- Since SAT $\leq_{p} 3$-SAT \leq_{p} INDEPENDENT-SET
- Claim 3: SAT \leq_{p} SET-COVER

Computational Intractability

Polynomial-time reduction

- Claim 1: $3-$ SAT \leq_{p} INDEPENDENT-SET
- Claim 2: SAT \leq_{p} INDEPENDENT-SET
- Since SAT $\leq_{p} 3$-SAT \leq_{p} INDEPENDENT-SET
- Claim 3: SAT \leq_{p} SET-COVER
- Since SAT $\leq_{p} 3$-SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER

Computational Intractability: NP and NP-complete

Computational Intractability NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.

Computational Intractability
 NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?

Computational Intractability
 NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?
- Let us try to extract a theme that is common to some of the problems we saw:
- INDEPENDENT-SET: Given (G, k), determine if G has an independent set of size at least k.
- VERTEX-COVER: Given (G, k), determine if G has a vertex cover of size at most k.
- SAT: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.

Computational Intractability
 NP, NP-hard, NP-complete

- Let us try to extract a theme that is common to some of the problems we saw:
- INDEPENDENT-SET: Given (G, k), determine if G has an independent set of size at least k.
- Suppose there is an independent set of size at least k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- VERTEX-COVER: Given (G, k), determine if G has a vertex cover of size at most k.
- Suppose there is a vertex cover of size at most k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- SAT: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.
- Suppose the formula Ω is satisfiable and someone gives such a satisfying assignment as a certificate. Then we can verify this certificate quickly.

End

