COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Applications of Network Flow

Network Flow

- Suppose there are four teams in IPL with their current number of wins:
- Daredevils: 10
- Sunrisers: 10
- Lions: 10
- Supergiants: 8
- There are 7 more games to be played. These are as follows:
- Supergiants plays all other 3 teams.
- Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs Lions, Sunrisers Vs Daredevils

Network Flow
 Team Elimination

- Suppose there are four teams in IPL with their current number of wins:
- Daredevils: 10
- Sunrisers: 10
- Lions: 10
- Supergiants: 8
- There are 7 more games to be played. These are as follows:
- Supergiants plays all other 3 teams.
- Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs Lions, Sunrisers Vs Daredevils
- A team is said to be eliminated if it cannot end with maximum number of wins.
- Can we say that Supergiants have been eliminated give the current scenario?

Network Flow
 Team Elimination

- Suppose there are four teams in IPL with their current number of wins:
- Daredevils: 10
- Sunrisers: 10
- Lions: 9
- Supergiants: 8
- There are 7 more games to be played. These are as follows:
- Supergiants plays all other 3 teams.
- 4 games between Daredevils and Sunrisers.
- Can we say that Supergiants have been eliminated give the current scenario?

Network Flow

Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted by $w(i)$. There are $G(i, j)$ games yet to be played between team i and j. Design an algorithm to determine whether a given team x has been eliminated.

Network Flow

Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted by $w(i)$.There are $G(i, j)$ games yet to be played between team i and j. Design an algorithm to determine whether a given team x has been eliminated.

- Consider the following flow network

Figure: Team x can end with at most m wins, i.e., $m=w(x)+\sum_{j} G(x, j)$

Network Flow

Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted by $w(i)$.There are $G(i, j)$ games yet to be played between team i and j. Design an algorithm to determine whether a given team x has been eliminated.

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.

Figure: Team x can end with at most m wins, i.e., $m=w(x)+\sum_{j} G(x, j)$

Network Flow

Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted by $w(i)$. There are $G(i, j)$ games yet to be played between team i and j. Design an algorithm to determine whether a given team x has been eliminated.

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.
- Comment: If we can somehow find a subset T of teams (not including x) such that
$\sum_{i \in T} w(i)+\sum_{i<j \text { and } i, j \in T} G(i, j)>m \cdot|T|$. Then we have a witness to the fact that x has been eliminated.

Network Flow
 Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted by $w(i)$. There are $G(i, j)$ games yet to be played between team i and j. Design an algorithm to determine whether a given team x has been eliminated.

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.
- Comment: If we can somehow find a subset T of teams (not including x) such that
$\sum_{i \in T} w(i)+\sum_{i<j \text { and } i, j \in T} G(i, j)>m \cdot|T|$. Then we have a witness to the fact that x has been eliminated.
- Can we find such a subset T ?

Network Flow

Team Elimination

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.

Proof.

- Claim 1.1: If x has been eliminated, then the max flow in the network is $<g^{*}$.

Network Flow

Team Elimination

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.

Proof of Claim 1

- Claim 1.1: If x has been eliminated, then the max flow in the network is $<g^{*}$.
- Claim 1.2: If the max flow is $<g^{*}$, then team x has been eliminated.

Proof of Claim 1.2

- Consider any s-t min-cut (A, B) in the graph.
- Claim 1.2.1: If $v_{i j}$ is in A, then both v_{i} and v_{j} are in A.

Network Flow

Team Elimination

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.

Proof of Claim 1

- Claim 1.1: If x has been eliminated, then the max flow in the network is $<g^{*}$.
- Claim 1.2: If the max flow is $<g^{*}$, then team x has been eliminated.

Proof of Claim 1.2

- Consider any s-t min-cut (A, B) in the graph.
- Claim 1.2.1: If $v_{i j}$ is in A, then both v_{i} and v_{j} are in A.
- Claim 1.2.2: If both v_{i} and v_{j} are in A, then $v_{i j}$ is in A.

Network Flow

Team Elimination

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } x \notin\{i, j\}} G(i, j)$.

Proof of Claim 1

- Claim 1.1: If x has been eliminated, then the max flow in the network is $<g^{*}$.
- Claim 1.2: If the max flow is $<g^{*}$, then team x has been eliminated.

Proof of Claim 1.2

- Consider any s - t min-cut (A, B) in the graph.
- Claim 1.2.1: If $v_{i j}$ is in A, then both v_{i} and v_{j} are in A.
- Claim 1.2.2: If both v_{i} and v_{j} are in A, then $v_{i j}$ is in A.
- Let T be the set of teams such that $i \in T$ iff $v_{i} \in A$.

Network Flow

Team Elimination

- Claim 1: Team x has been eliminated iff the maximum flow in the network is $<g^{*}$, where $g^{*}=\sum_{i, j \text { s.t. } \times \notin\{i, j\}} G(i, j)$.

Proof of Claim 1

- Claim 1.1: If x has been eliminated, then the max flow in the network is $<\mathrm{g}^{*}$.
- Claim 1.2: If the max flow is $<g^{*}$, then team x has been eliminated.

Proof of Claim 1.2

- Consider any s-t min-cut (A, B) in the graph.
- Claim 1.2.1: If $v_{i j}$ is in A, then both v_{i} and v_{j} are in A.
- Claim 1.2.2: If both v_{i} and v_{j} are in A, then $v_{i j}$ is in A.
- Let T be the set of teams such that $i \in T$ iff $v_{i} \in A$. Then we have:

$$
\begin{aligned}
& C(A, B)=\sum_{i \in T}(m-w(i))+\sum_{\{i, j\} \not \subset T} G(i, j)<g^{*} \\
\Rightarrow \quad & m \cdot|T|-\sum_{i \in T} w(i)+\left(g^{*}-\sum_{\{i, j\} \subset T} G(i, j)\right)<g^{*} \\
\Rightarrow \quad & \sum_{i \in T} w(i)+\sum_{\{i, j\} \subset T} G(i, j)>m \cdot|T|
\end{aligned}
$$

End

