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Network Flow
Hall’s Theorem

Definition (Perfect Matching)

A given bipartite graph is said to have a perfect matching if all
vertices are present in a matching.

Claim 1: If a bipartite graph G = (X ,Y ,E ) has a perfect
matching, then |X | = |Y |.
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Network Flow
Hall’s Theorem

Definition (Perfect Matching)

A given bipartite graph is said to have a perfect matching if all
vertices are present in a matching.

Claim 1: If a bipartite graph G = (X ,Y ,E ) has a perfect
matching, then |X | = |Y |.
For a subset A ⊆ X , let N(A) denote the neighboring vertices of
A in G .
Claim 2: There is no perfect matching if there is an A such that
|A| > |N(A)|.
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Network Flow
Hall’s Theorem

Definition (Perfect Matching)

A given bipartite graph is said to have a perfect matching if all
vertices are present in a matching.

Claim 1: If a bipartite graph G = (X ,Y ,E ) has a perfect
matching, then |X | = |Y |.
For a subset A ⊆ X , let N(A) denote the neighboring vertices of
A in G .
Claim 2: There is no perfect matching if there is an A such that
|A| > |N(A)|.
Is the converse of Claim 2 also true?
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Network Flow
Hall’s Theorem

Definition (Perfect Matching)

A given bipartite graph is said to have a perfect matching if all
vertices are present in a matching.

Claim 1: If a bipartite graph G = (X ,Y ,E ) has a perfect
matching, then |X | = |Y |.
For a subset A ⊆ X , let N(A) denote the neighboring vertices of
A in G .
Claim 2: There is no perfect matching if there is an A such that
|A| > |N(A)|.
Is the converse of Claim 2 also true?

Theorem (Hall’s Theorem)

Given any bipartite graph G = (X ,Y ,E ), there is a perfect matching
in G if and only if for every subset A ⊆ X , we have |A| ≤ |N(A)|.
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Network Flow
Hall’s Theorem

Theorem (Hall’s Theorem)

Given any bipartite graph G = (X ,Y ,E ), there is a perfect matching
in G if and only if for every subset A ⊆ X , we have |A| ≤ |N(A)|.

Proof

Claim 3: If there is a perfect matching, then for all subsets
A ⊆ X , |A| ≤ |N(A)|.
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Network Flow
Hall’s Theorem

Theorem (Hall’s Theorem)

Given any bipartite graph G = (X ,Y ,E ), there is a perfect matching
in G if and only if for every subset A ⊆ X , we have |A| ≤ |N(A)|.

Proof

Claim 3: If there is a perfect matching, then for all subsets
A ⊆ X , |A| ≤ |N(A)|.
Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
Let f be the max integer flow in the network. Consider the
residual graph Gf . Let S be the set of vertices reachable from s
in Gf . Let A′ be vertices of X in S and B ′ be vertices of Y in S .
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
Let f be the max integer flow in the network. Consider the
residual graph Gf . Let S be the set of vertices reachable from s
in Gf . Let A′ be vertices of X in S and B ′ be vertices of Y in S .
Claim 4.2: B ′ = N(A′).
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
Let f be the max integer flow in the network. Consider the
residual graph Gf . Let S be the set of vertices reachable from s
in Gf and T all remaining vertices. Let A′ be vertices of X in S
and B ′ be vertices of Y in S .
Claim 4.2: B ′ = N(A′).
Capacity of the cut (S ,T ) = n − |A′|+ |N(A′)|.
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
Let f be the max integer flow in the network. Consider the
residual graph Gf . Let S be the set of vertices reachable from s
in Gf and T all remaining vertices. Let A′ be vertices of X in S
and B ′ be vertices of Y in S .
Claim 4.2: B ′ = N(A′).
Capacity of the cut (S ,T ) = n − |A′|+ |N(A′)|.
From Max-flow-min-cut theorem, we have:
n − |A′|+ |N(A′)| = max flow < n⇒ |A′| > |N(A′)|.
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Network Flow
Hall’s Theorem

Claim 4: If there is no perfect matching, then there is a subset
A ⊆ X such that |A| > |N(A)|.

Proof of Claim 4

Consider the flow network in figure below constructed using the
bipartite graph.
Claim 4.1: The max-flow in the network is equal to the maximum
matching in G .
Let f be the max integer flow in the network. Consider the
residual graph Gf . Let S be the set of vertices reachable from s
in Gf and T all remaining vertices. Let A′ be vertices of X in S
and B ′ be vertices of Y in S .
Claim 4.2: B ′ = N(A′).
Capacity of the cut (S ,T ) = n − |A′|+ |N(A′)|.
From Max-flow-min-cut theorem, we have:
n − |A′|+ |N(A′)| = max flow < n⇒ |A′| > |N(A′)|.

This is a constructive proof since we can find a subset A′ such
that |A′| > |N(A′)|.
Such an A′ may be interpreted as a certificate of the fact that
there is no perfect matching in G .
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

A team is said to be eliminated if it cannot end with
maximum number of wins.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 9
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
4 games between Daredevils and Sunrisers.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins
denoted by w(i).There are G (i , j) games yet to be played between
team i and j . Design an algorithm to determine whether a given
team x has been eliminated.
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Consider the following flow network

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
Can we find such a subset T?
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof.

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
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End
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