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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

The running time of this algorithm depends on C .
Can we design an algorithm such that the running time depends
only on the structure of the graph?

In a model where doing operations on the weights cost O(1) time.
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Network Flow
Maximum flow

Algorithm

Edmonds-Karp

- Start with an s − t flow such that for all e, f (e) = 0
- While there is an s − t path P in Gf

- Find an s − t path in Gf with least hop-length
- Augment flow along an augmenting path and let f ′ be

the resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )
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Network Flow
Maximum flow

Algorithm

Edmonds-Karp

- Start with an s − t flow such that for all e, f (e) = 0
- While there is an s − t path P in Gf

- Find an s − t path in Gf with least hop-length
- Augment flow along an augmenting path and let f ′ be

the resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

How do we bound the running time of the above algorithm?
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Network Flow
Maximum flow

Let df (s, v) denote the hop-length of the shortest path from s to
v in Gf .
Claim 1: For all v 6= s, t, df (s, v) either remains same or
increases with each flow augmentation.

Proof of claim 1

Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f ′ be the flow
after this augmentation.
Let v be the vertex with minimum value of df ′(s, v) whose
shortest distance was reduced.
Let u be the vertex just before v in the shortest path from s to v
in Gf ′ .
Claim 1.1: df ′(s, u) = df ′(s, v)− 1.
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Network Flow
Maximum flow

Let df (s, v) denote the hop-length of the shortest path from s to
v in Gf .
Claim 1: For all v 6= s, t, df (s, v) either remains same or
increases with each flow augmentation.

Proof of claim 1

Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f ′ be the flow
after this augmentation.
Let v be the vertex with minimum value of df ′(s, v) whose
shortest distance was reduced.
Let u be the vertex just before v in the shortest path from s to v
in Gf ′ .
Claim 1.1: df ′(s, u) = df ′(s, v)− 1.
Claim 1.2: df ′(s, u) ≥ df (s, u).
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Network Flow
Maximum flow

Let df (s, v) denote the hop-length of the shortest path from s to
v in Gf .
Claim 1: For all v 6= s, t, df (s, v) either remains same or
increases with each flow augmentation.

Proof of claim 1

Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f ′ be the flow
after this augmentation.
Let v be the vertex with minimum value of df ′(s, v) whose
shortest distance was reduced.
Let u be the vertex just before v in the shortest path from s to v
in Gf ′ .
Claim 1.1: df ′(s, u) = df ′(s, v)− 1.
Claim 1.2: df ′(s, u) ≥ df (s, u).
Claim 1.3: Edge (u, v) is not present in Gf .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Let df (s, v) denote the hop-length of the shortest path from s to
v in Gf .
Claim 1: For all v 6= s, t, df (s, v) either remains same or
increases with each flow augmentation.

Proof of claim 1

Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f ′ be the flow
after this augmentation.
Let v be the vertex with minimum value of df ′(s, v) whose
shortest distance was reduced.
Let u be the vertex just before v in the shortest path from s to v
in Gf ′ .
Claim 1.1: df ′(s, u) = df ′(s, v)− 1.
Claim 1.2: df ′(s, u) ≥ df (s, u).
Claim 1.3: Edge (u, v) is not present in Gf .

Since otherwise, df (s, v) ≤ df (s, u) + 1 ≤ df ′(s, u) + 1 = df ′(s, v).
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Network Flow
Maximum flow

Let df (s, v) denote the hop-length of the shortest path from s to
v in Gf .
Claim 1: For all v 6= s, t, df (s, v) either remains same or
increases with each flow augmentation.

Proof of claim 1

Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f ′ be the flow
after this augmentation.
Let v be the vertex with minimum value of df ′(s, v) whose
shortest distance was reduced.
Let u be the vertex just before v in the shortest path from s to v
in Gf ′ .
Claim 1.1: df ′(s, u) = df ′(s, v)− 1.
Claim 1.2: df ′(s, u) ≥ df (s, u).
Claim 1.3: Edge (u, v) is not present in Gf .
Claim 1.3 implies that u 6= s since otherwise (u, v) cannot be
present in Gf ′ .
Claim 1.3 also implies that (v , u) was in the augmenting path
implying: df (s, v) = df (s, u)− 1 ≤ df ′(s, u)− 1 ≤ df ′(s, v)− 2,
which is a contradiction.
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Network Flow
Maximum flow

Claim 2: The number of flow augmentations in the
Edmonds-Karp algorithm is O(nm).

Proof of claim 2

An edge is said to be critical while augmentation if it is the
bottleneck edge.
Claim 2.1: Any edge can become critical at most n/2 times.
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Network Flow
Maximum flow

Claim 2: The number of flow augmentations in the
Edmonds-Karp algorithm is O(nm).

Proof of claim 2

An edge is said to be critical while augmentation if it is the
bottleneck edge.
Claim 2.1: Any edge can become critical at most n/2 times.

Proof of claim 2.1

Consider any edge (u, v). Let f be the flow just before (u, v)
becomes critical. Then we have df (s, v) = df (s, u) + 1.
After this, the edge (u, v) disappears. Let f ′ be the flow just
before the augmentation that brings back edge (u, v). Then we
have df ′(s, u) = df ′(s, v) + 1.
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Network Flow
Maximum flow

Claim 2: The number of flow augmentations in the
Edmonds-Karp algorithm is O(nm).

Proof of claim 2

An edge is said to be critical while augmentation if it is the
bottleneck edge.
Claim 2.1: Any edge can become critical at most n/2 times.

Proof of claim 2.1

Consider any edge (u, v). Let f be the flow just before (u, v)
becomes critical. Then we have df (s, v) = df (s, u) + 1.
After this, the edge (u, v) disappears. Let f ′ be the flow just
before the augmentation that brings back edge (u, v). Then we
have df ′(s, u) = df ′(s, v) + 1.
Combining the above two we get:
df ′(s, u) = df ′(s, v) + 1 ≥ df (s, v) + 1 = df (s, u) + 2.
So, the shortest distance has increased by at least 2 between the
instances when (u, v) becomes critical.
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Network Flow
Maximum flow

Algorithm

Edmonds-Karp

- Start with an s − t flow such that for all e, f (e) = 0
- While there is an s − t path P in Gf

- Find an s − t path in Gf with least hop-length
- Augment flow along an augmenting path and let f ′ be

the resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

The running time of Edmonds-Karp algorithm is O(nm2).
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Applications of Network Flow
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Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give
a maximum matching in the graph.

Example:
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Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .
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Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .
Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.
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End
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