COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

< Ξ > < Ξ >

æ

Network Flow Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \geq 1$)
 - While there is an s-t path P in $\mathcal{G}_{f}(\Delta)$
 - Augment flow along an augmenting path and
 - let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

-
$$\Delta \leftarrow \Delta/2$$

- return(f)

- The running time of this algorithm depends on C.
- Can we design an algorithm such that the running time depends only on the structure of the graph?
 - In a model where doing operations on the weights cost O(1) time.

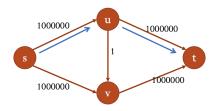
Network Flow Maximum flow

Algorithm

Edmonds-Karp

- Start with an s t flow such that for all e, f(e) = 0
- While there is an s-t path P in G_f
 - Find an s t path in G_f with least hop-length
 - Augment flow along an augmenting path and let f^\prime be the resulting flow
 - Update f to f' and G_f to $G_{f'}$

- return(f)



Network Flow Maximum flow

Algorithm

Edmonds-Karp

- Start with an s t flow such that for all e, f(e) = 0
- While there is an s-t path P in G_f
 - Find an s t path in G_f with least hop-length
 - Augment flow along an augmenting path and let f^\prime be the resulting flow
 - Update f to f' and G_f to $G_{f'}$
- return(f)

• How do we bound the running time of the above algorithm?

- Let $d_f(s, v)$ denote the hop-length of the shortest path from s to v in G_f .
- <u>Claim 1</u>: For all v ≠ s, t, d_f(s, v) either remains same or increases with each flow augmentation.

- Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
- Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest distance was reduced.
- Let *u* be the vertex just before *v* in the shortest path from *s* to *v* in *G*_{*f*'}.

• Claim 1.1:
$$d_{f'}(s, u) = d_{f'}(s, v) - 1$$
.

- Let $d_f(s, v)$ denote the hop-length of the shortest path from s to v in G_f .
- <u>Claim 1</u>: For all v ≠ s, t, d_f(s, v) either remains same or increases with each flow augmentation.

- Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
- Let v be the vertex with minimum value of d_f(s, v) whose shortest distance was reduced.
- Let *u* be the vertex just before *v* in the shortest path from *s* to *v* in *G*_{*f*'}.

• Claim 1.1:
$$d_{f'}(s, u) = d_{f'}(s, v) - 1$$
.

• <u>Claim 1.2</u>: $d_{f'}(s, u) \ge d_f(s, u)$.

- Let $d_f(s, v)$ denote the hop-length of the shortest path from s to v in G_f .
- <u>Claim 1</u>: For all v ≠ s, t, d_f(s, v) either remains same or increases with each flow augmentation.

- Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
- Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest distance was reduced.
- Let *u* be the vertex just before *v* in the shortest path from *s* to *v* in *G*_{*f*'}.
- <u>Claim 1.1</u>: $d_{f'}(s, u) = d_{f'}(s, v) 1$.
- <u>Claim 1.2</u>: $d_{f'}(s, u) \ge d_f(s, u)$.
- Claim 1.3: Edge (u, v) is not present in G_f .

- Let $d_f(s, v)$ denote the hop-length of the shortest path from s to v in G_f .
- <u>Claim 1</u>: For all v ≠ s, t, d_f(s, v) either remains same or increases with each flow augmentation.

- Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
- Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest distance was reduced.
- Let u be the vertex just before v in the shortest path from s to v in $G_{f'}$.
- <u>Claim 1.1</u>: $d_{f'}(s, u) = d_{f'}(s, v) 1$.
- <u>Claim 1.2</u>: $d_{f'}(s, u) \ge d_f(s, u)$.
- Claim 1.3: Edge (u, v) is not present in G_f .
 - Since otherwise, $d_f(s,v) \leq d_f(s,u) + 1 \leq d_{f'}(s,u) + 1 = d_{f'}(s,v)$.

- Let $d_f(s, v)$ denote the hop-length of the shortest path from s to v in G_f .
- <u>Claim 1</u>: For all v ≠ s, t, d_f(s, v) either remains same or increases with each flow augmentation.

- Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
- Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest distance was reduced.
- Let u be the vertex just before v in the shortest path from s to v in $G_{f'}$.
- <u>Claim 1.1</u>: $d_{f'}(s, u) = d_{f'}(s, v) 1$.
- <u>Claim 1.2</u>: $d_{f'}(s, u) \ge d_f(s, u)$.
- Claim 1.3: Edge (u, v) is not present in G_f .
- Claim 1.3 implies that $u \neq s$ since otherwise (u, v) cannot be present in $G_{f'}$.
- Claim 1.3 also implies that (v, u) was in the augmenting path implying: d_f(s, v) = d_f(s, u) − 1 ≤ d_{f'}(s, u) − 1 ≤ d_{f'}(s, v) − 2, which is a contradiction.

• <u>Claim 2</u>: The number of flow augmentations in the Edmonds-Karp algorithm is O(nm).

Proof of claim 2

- An edge is said to be critical while augmentation if it is the *bottleneck* edge.
- <u>Claim 2.1</u>: Any edge can become critical at most n/2 times.

· • = • • = •

• <u>Claim 2</u>: The number of flow augmentations in the Edmonds-Karp algorithm is O(nm).

Proof of claim 2

- An edge is said to be critical while augmentation if it is the *bottleneck* edge.
- <u>Claim 2.1</u>: Any edge can become critical at most n/2 times.

Proof of claim 2.1

- Consider any edge (u, v). Let f be the flow just before (u, v) becomes critical. Then we have $d_f(s, v) = d_f(s, u) + 1$.
- After this, the edge (u, v) disappears. Let f' be the flow just before the augmentation that brings back edge (u, v). Then we have $d_{f'}(s, u) = d_{f'}(s, v) + 1$.

• <u>Claim 2</u>: The number of flow augmentations in the Edmonds-Karp algorithm is O(nm).

Proof of claim 2

- An edge is said to be critical while augmentation if it is the *bottleneck* edge.
- <u>Claim 2.1</u>: Any edge can become critical at most n/2 times.

- Consider any edge (u, v). Let f be the flow just before (u, v) becomes critical. Then we have $d_f(s, v) = d_f(s, u) + 1$.
- After this, the edge (u, v) disappears. Let f' be the flow just before the augmentation that brings back edge (u, v). Then we have d_{f'}(s, u) = d_{f'}(s, v) + 1.
- Combining the above two we get: $d_{f'}(s, u) = d_{f'}(s, v) + 1 \ge d_f(s, v) + 1 = d_f(s, u) + 2.$
- So, the shortest distance has increased by at least 2 between the instances when (u, v) becomes critical.

Algorithm

Edmonds-Karp

- Start with an s t flow such that for all e, f(e) = 0
- While there is an s t path P in G_f
 - Find an s t path in G_f with least hop-length
 - Augment flow along an augmenting path and let f^\prime be the resulting flow
 - Update f to f' and G_f to $G_{f'}$

- return(f)

• The running time of Edmonds-Karp algorithm is $O(nm^2)$.

Applications of Network Flow

3 🕨 🖌 3

э

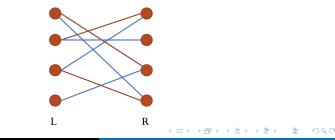
Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one edge in M.

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a maximum matching in the graph.

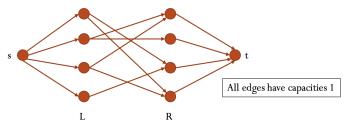
• Example:



Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a maximum matching in the graph.

• Consider the network graph below constructed from the bipartite graph.

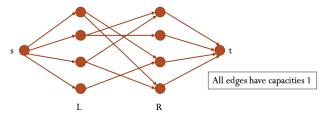


• <u>Claim 1</u>: Suppose there is an integer flow of value k in the network graph. Then the bipartite graph has a matching of size k.

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a maximum matching in the graph.

• Consider the network graph below constructed from the bipartite graph.



• <u>Claim 1</u>: Suppose there is an integer flow of value k in the network graph. Then the bipartite graph has a matching of size k. <u>Claim 2</u>: Suppose the bipartite graph has a matching of size k. Then there is an integer flow of value k in the network graph.

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590