COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis a

Design of Algorithms

Network Flow
Maximum flow

o Let C = Ze out of s C(e)'

@ The running time of the Ford-Fulkerson algorithm is
O(m- C).

@ C could be very large compared to the size of the graph.
Consider an example below.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

o Consider the favorable case where the augmenting paths
s,u,t and s, v, t are chosen.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

o Consider the favorable case where the augmenting paths
s,u,t and s, v, t are chosen.

1000000, =~ ~ T T~ -
/7

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

o Consider the favorable case where the augmenting paths
s,u,t and s, v, t are chosen.

@ Max flow is found in 2 augmentations.

—— -

1000000, =~ ~ T T~ -
/7

=~ (1000000
\

-

N 7
1000000" ~ = ===~ === — -~ 1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

@ Now consider the case when augmenting paths s, u, v, t and
s, v, u, t are chosen repeatedly.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

o Now consider the case when augmenting paths s, u, v, t and
s, v, u,t are chosen repeatedly.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

@ Now consider the case when augmenting paths s, u, v, t and
s, v, u, t are chosen repeatedly.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

@ Now consider the case when augmenting paths s, u, v, t and
s, v, u, t are chosen repeatedly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow
Let C = Ze out of s C(e)'
The running time of the Ford-Fulkerson algorithm is
O(m- C).
@ C could be very large compared to the size of the graph.

o For the example below, we might get a better running time if
we could hide the edge with small capacity when looking for an
augmenting path.

General idea: Use all edges with large capacities before
considering edges with smaller capacity.

1000000

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

@ For an s-t flow and a positive integer A, let G¢(A) denote the
subgraph of the residual graph G¢ that consists of all vertices but
only edges with residual capacity of at least A.

@ |dea: Instead of finding augmenting paths in Gr, we will find
augmenting paths in Gf(A) for smaller and smaller values of A.

Algorithm

Scaling-Max-Flow
- Start with an s-t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A > 1)
- While there is an s-t path P in Gf(A)
- Augment flow along an augmenting path and
let £ be the resulting flow
- Update f to ' and Gf(A) to Gr/(A)
-A+—A)2
- return(f)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A > 1)
- While there is an s — t path P in Gf(A)
- Augment flow along an augmenting path and
let £ be the resulting flow
- Update f to f’ and Gf(A) to Gg(A)
-A+— A)2
- return(f)

o Claim 1: The algorithm returns max. flow on termination.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A >1)
- While there is an s — t path P in Gf(A)
- Augment flow along an augmenting path and
let £ be the resulting flow
- Update f to f’ and Gf(A) to Gg(A)
-A+— A)2
- return(f)

o Claim 1: The algorithm returns max. flow on termination.
o Claim 2: The outer while loop runs for at most (1 + [log C1)
steps.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
~ While (A > 1)
- While there is an s — t path P in Gf(A)
- Augment flow along an augmenting path and
let ' be the resulting flow
- Update f to ' and Gf(A) to Gr/(A)
A A)2
- return(f)

o Claim 1: The algorithm returns max. flow on termination.

o Claim 2: The outer while loop runs for at most (1 + [log C1)
steps.

o Claim 3: Each augmentation increases the flow by at least A
(whatever the current value of A is).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A > 1)
- While there is an s — t path P in G¢(A)
- Augment flow along an augmenting path and
let ' be the resulting flow
- Update f to f’ and Gr(A) to Ge(A)
-A+—A)2
- return(f)

@ Claim 1: The algorithm returns max. flow on termination.

o Claim 2: The outer while loop runs for at most (1 + [log C1)
steps.

o Claim 3: Each augmentation increases the flow by at least A
(whatever the current value of A is).

o Claim 4: Let f be the flow at the end of a A-scaling phase. Then
there is an s — t cut (A, B) such that ¢(A, B) < v(f)+ m- A.

o Corollary: The max flow in the graph has value at most
v(f)+m-A.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

o Claim 4: Let f be the flow at the end of a A-scaling phase. Then
there is an s — t cut (A, B) such that c(A, B) < v(f) +m- A.

o Corollary: The max flow in the graph has value at most
v(f)+m-A.

Proof of Claim 4.

Let A be the set of vertices that are reachable from s in G¢(A) (see
figure below). Then we have

vf) = Y fle- D fle)

e out of A einto A
> > ((a)-n)- Y A
e out of A e into A
> (A, B)—m-A.
O
fle)<A
[]
t
f(e)>c

A (all vertices reachable from s in G -(A).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A >1)
- While there is an s — t path P in Gf(A)
- Augment flow along an augmenting path and
let ' be the resulting flow
- Update f to f’ and Gf(A) to Gp(A)
SA A2
- return(f)

o Claim 1: The algorithm returns max. flow on termination.

o Claim 2: The outer while loop runs for at most (1 + [log C1)
steps.

o Claim 3: Each augmentation increases the flow by at least A
(whatever the current value of A is).

o Claim 4: Let f be the flow at the end of a A-scaling phase. Then
there is an s — t cut (A, B) such that c(A, B) < v(f) + m- A.

o Corollary: The max flow in the graph has value at most
v(f)+m-A.

o Claim 5: The total number of iterations of the inner while loop is

at most 2m.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Maximum flow

Scaling-Max-Flow
- Start with an s — t flow such that for all e, f(e) =0
- A < largest power of 2 smaller than C
- While (A > 1)
- While there is an s — t path P in G¢(A)
- Augment flow along an augmenting path and
let ' be the resulting flow
- Update f to f" and Gf(A) to Gs/(A)
SA—A)2
- return(f)

o Claim 1: The algorithm returns max. flow on termination.
o Claim 2: The outer while loop runs for at most (1 + [log C])

°
O
ER
3

w

. Each augmentation increases the flow by at least A
(whatever the current value of A is).
Claim 4: Let f be the flow at the end of a A-scaling phase. Then
there is an s — t cut (A, B) such that c(A, B) < v(f) +m- A.

o Corollary: The max flow in the graph has value at most

v(f)+m-A.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.
Claim 6: The running time of Scaling-Max-Flow algorithm is
O(m? - log C).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis a

Design of Algorithms

