
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Let C =
∑

e out of s c(e).

The running time of the Ford-Fulkerson algorithm is
O(m · C ).

C could be very large compared to the size of the graph.
Consider an example below.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Consider the favorable case where the augmenting paths
s, u, t and s, v , t are chosen.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Consider the favorable case where the augmenting paths
s, u, t and s, v , t are chosen.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Consider the favorable case where the augmenting paths
s, u, t and s, v , t are chosen.

Max flow is found in 2 augmentations.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Now consider the case when augmenting paths s, u, v , t and
s, v , u, t are chosen repeatedly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Now consider the case when augmenting paths s, u, v , t and
s, v , u, t are chosen repeatedly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Now consider the case when augmenting paths s, u, v , t and
s, v , u, t are chosen repeatedly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Now consider the case when augmenting paths s, u, v , t and
s, v , u, t are chosen repeatedly.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Let C =
∑

e out of s c(e).
The running time of the Ford-Fulkerson algorithm is
O(m · C ).
C could be very large compared to the size of the graph.

For the example below, we might get a better running time if
we could hide the edge with small capacity when looking for an
augmenting path.

General idea: Use all edges with large capacities before
considering edges with smaller capacity.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

For an s-t flow and a positive integer ∆, let Gf (∆) denote the
subgraph of the residual graph Gf that consists of all vertices but
only edges with residual capacity of at least ∆.
Idea: Instead of finding augmenting paths in Gf , we will find
augmenting paths in Gf (∆) for smaller and smaller values of ∆.

Algorithm

Scaling-Max-Flow

- Start with an s-t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s-t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Proof of Claim 4.

Let A be the set of vertices that are reachable from s in Gf (∆) (see
figure below). Then we have

v(f ) =
∑

e out of A

f (e)−
∑

e into A

f (e)

≥
∑

e out of A

(c(e)−∆)−
∑

e into A

∆

≥ c(A,B)−m ·∆.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.
Claim 6: The running time of Scaling-Max-Flow algorithm is
O(m2 · logC ).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


