COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

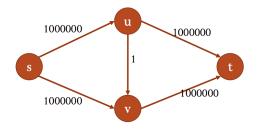
Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

< Ξ > < Ξ >

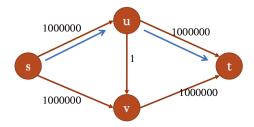
æ

• Let
$$C = \sum_{e \text{ out of } s} c(e)$$
.

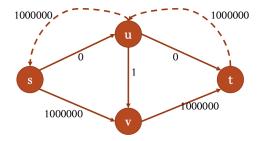
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph. Consider an example below.



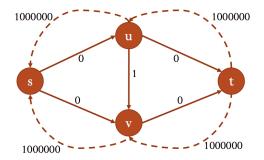
• Consider the favorable case where the augmenting paths *s*, *u*, *t* and *s*, *v*, *t* are chosen.

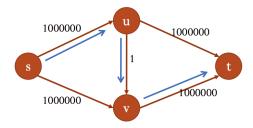


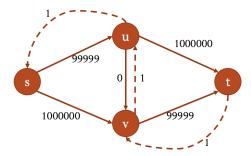
• Consider the favorable case where the augmenting paths *s*, *u*, *t* and *s*, *v*, *t* are chosen.

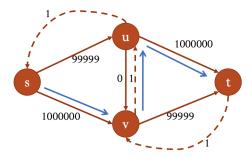


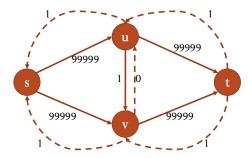
- Consider the favorable case where the augmenting paths *s*, *u*, *t* and *s*, *v*, *t* are chosen.
- Max flow is found in 2 augmentations.



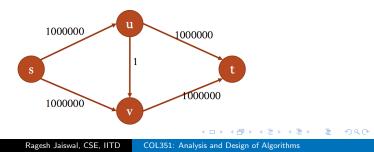








- Let $C = \sum_{e \text{ out of } s} c(e)$.
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- C could be very large compared to the size of the graph.
 - For the example below, we might get a better running time if we could hide the edge with small capacity when looking for an augmenting path.
- <u>General idea</u>: Use all edges with large capacities before considering edges with smaller capacity.



- For an s-t flow and a positive integer Δ, let G_f(Δ) denote the subgraph of the residual graph G_f that consists of all vertices but only edges with residual capacity of at least Δ.
- <u>Idea</u>: Instead of finding augmenting paths in G_f , we will find augmenting paths in $G_f(\Delta)$ for smaller and smaller values of Δ .

Algorithm

Scaling-Max-Flow

- Start with an s-t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \ge 1$)
 - While there is an s-t path P in $G_f(\Delta)$
 - Augment flow along an augmenting path and
 - let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$
 - $\Delta \leftarrow \Delta/2$
- return(f)

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \ge 1$)
 - While there is an s-t path P in $G_f(\Delta)$
 - Augment flow along an augmenting path and let f' be the resulting flow.
 - let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

-
$$\Delta \leftarrow \Delta/2$$

- return(f)

• <u>Claim 1</u>: The algorithm returns max. flow on termination.

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \ge 1$)
 - While there is an s-t path P in $\mathcal{G}_{f}(\Delta)$
 - Augment flow along an augmenting path and let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

-
$$\Delta \leftarrow \Delta/2$$

- return(f)

- <u>Claim 1</u>: The algorithm returns max. flow on termination.
- <u>Claim 2</u>: The outer while loop runs for at most (1 + ⌈log C⌉) steps.

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \ge 1$)
 - While there is an s-t path P in $\mathcal{G}_{f}(\Delta)$
 - Augment flow along an augmenting path and let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

-
$$\Delta \leftarrow \Delta/2$$

- return(f)
- <u>Claim 1</u>: The algorithm returns max. flow on termination.
- <u>Claim 2</u>: The outer while loop runs for at most (1 + ⌈log C⌉) steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ (whatever the current value of Δ is).

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While $(\Delta \ge 1)$
 - While there is an s-t path P in $\mathcal{G}_{f}(\Delta)$
 - Augment flow along an augmenting path and
 - let f' be the resulting flow
 - Update f to f' and ${\it G}_f(\Delta)$ to ${\it G}_{f'}(\Delta)$

-
$$\Delta \leftarrow \Delta/2$$

- return(f)
- <u>Claim 1</u>: The algorithm returns max. flow on termination.
- <u>Claim 2</u>: The outer while loop runs for at most (1 + ⌈log C⌉) steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ (whatever the current value of Δ is).
- <u>Claim 4</u>: Let f be the flow at the end of a Δ-scaling phase. Then there is an s − t cut (A, B) such that c(A, B) ≤ v(f) + m · Δ.
 - Corollary: The max flow in the graph has value at most $\overline{v(f) + m} \cdot \Delta$.

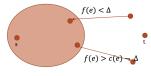
ロト (得) (手) (手)

- Claim 4: Let f be the flow at the end of a Δ -scaling phase. Then there is an s t cut (A, B) such that $c(A, B) \leq v(f) + m \cdot \Delta$.
 - Corollary: The max flow in the graph has value at most $\overline{v(f) + m} \cdot \Delta$.

Proof of Claim 4.

Let A be the set of vertices that are reachable from s in $G_f(\Delta)$ (see figure below). Then we have

$$\begin{aligned} v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \\ &\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ into } A} \Delta \\ &\geq c(A, B) - m \cdot \Delta. \end{aligned}$$



A (all vertices reachable from s in $G_f(\Delta)$.

(日) (同) (三) (三)

э

Algorithm

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- $\Delta \leftarrow$ largest power of 2 smaller than C
- While ($\Delta \ge 1$)
 - While there is an s-t path P in $G_f(\Delta)$
 - Augment flow along an augmenting path and let f' be the resulting flow
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

$$\Delta \leftarrow \Delta/2$$

- return(f)
- <u>Claim 1</u>: The algorithm returns max. flow on termination.
- Claim 2: The outer while loop runs for at most (1 + ⌈log C⌉) steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ (whatever the current value of Δ is).
- <u>Claim 4</u>: Let f be the flow at the end of a Δ -scaling phase. Then there is an s - t cut (A, B) such that $c(A, B) \le v(f) + m \cdot \Delta$.
 - Corollary: The max flow in the graph has value at most $\overline{v(f) + m} \cdot \Delta$.
- <u>Claim 5</u>: The total number of iterations of the inner while loop is at most 2*m*.

Algorithm

```
\begin{array}{l} \mbox{Scaling-Max-Flow}\\ - \mbox{Start with an } s-t \mbox{ flow such that for all } e, \mbox{ } f(e)=0\\ - \mbox{ } \Delta \leftarrow \mbox{ largest power of 2 smaller than } C\\ - \mbox{ While } (\Delta \geq 1)\\ - \mbox{ While there is an } s-t \mbox{ path } P \mbox{ in } G_f(\Delta)\\ - \mbox{ Augment flow along an augmenting path and}\\ \mbox{ } let \mbox{ } f' \mbox{ be the resulting flow}\\ - \mbox{ } Update \mbox{ } f \mbox{ to } f'(\Delta) \mbox{ to } G_{f'}(\Delta)\\ - \mbox{ } \Delta \leftarrow \Delta/2\\ - \mbox{ return}(f) \end{array}
```

- Claim 1: The algorithm returns max. flow on termination.
- Claim 2: The outer while loop runs for at most (1 + ⌈log C⌉) steps.
- Claim 3: Each augmentation increases the flow by at least Δ (whatever the current value of Δ is).
- <u>Claim 4</u>: Let f be the flow at the end of a Δ -scaling phase. Then there is an s t cut (A, B) such that $c(A, B) \le v(f) + m \cdot \Delta$.
 - Corollary: The max flow in the graph has value at most $\overline{v(f) + m} \cdot \Delta$.
- <u>Claim 5</u>: The total number of iterations of the inner while loop is at most 2*m*.
- Claim 6: The running time of Scaling-Max-Flow algorithm is $O(m^2 \cdot \log C)$.

・ロト ・同ト ・ヨト ・ヨト

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590