
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack (Variant)

Problem

There are n items with unlimited copies of each item available. Each
copy of the i th item has weight w(i) and value v(i). You have a
knapsack of capacity W . All w(i)’s and W are positive integers. Your
goal is to determine how many copies of every item to put in the
knapsack so that the capacity of the knapsack is not exceeded and the
total value of items is maximized.

Dynamic Programming solution:

V (i ,w): The maximum value that can be obtained using items
{1, ..., i} given the knapsack has capacity w .
If w(i) > w , then V (i ,w) =?
If w(i) ≤ w , then V (i ,w) =?
∀w ≤W , V (1,w) =?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack (Variant)

Problem

There are n items with unlimited copies of each item available. Each
copy of the i th item has weight w(i) and value v(i). You have a
knapsack of capacity W . All w(i)’s and W are positive integers. Your
goal is to determine how many copies of every item to put in the
knapsack so that the capacity of the knapsack is not exceeded and the
total value of items is maximized.

Dynamic Programming solution:

V (i ,w): The maximum value that can be obtained using items
{1, ..., i} given the knapsack has capacity w .
If w(i) > w , then V (i ,w) = V (i − 1,w)
If w(i) ≤ w , then
V (i ,w) = max {V (i − 1,w),V (i ,w − w(i)) + v(i)}
∀w ≤W , V (1,w) = b w

w(1)c · v(1).

What is the running time of the table-filling algorithm based on
the above recursive formulation?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack (Variant)

Problem

There are n items with unlimited copies of each item available. Each
copy of the i th item has weight w(i) and value v(i). You have a
knapsack of capacity W . All w(i)’s and W are positive integers. Your
goal is to determine how many copies of every item to put in the
knapsack so that the capacity of the knapsack is not exceeded and the
total value of items is maximized.

Dynamic Programming solution:

V (i ,w): The maximum value that can be obtained using items
{1, ..., i} given the knapsack has capacity w .
If w(i) > w , then V (i ,w) = V (i − 1,w)
If w(i) ≤ w , then
V (i ,w) = max {V (i − 1,w),V (i ,w − w(i)) + v(i)}
∀w ≤W , V (1,w) = b w

w(1)c · v(1).

What is the running time of the table-filling algorithm based on
the above recursive formulation?O(n ·W)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack

The 0-1 Knapsack problem falls into the category of very
difficult problems called NP-hard problems.

It is unlikely that we can solve such problems in time
polynomial in the input size.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack

The 0-1 Knapsack problem falls into the category of very
difficult problems called NP-hard problems.

It is unlikely that we can solve such problems in time
polynomial in the input size.

Suppose each weight is specified using n bits. Then the input
size is m = n2. The running time of the Dynamic
Programming algorithm is O(n · 2n)!

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
0-1 Knapsack

The 0-1 Knapsack problem falls into the category of very
difficult problems called NP-hard problems.

It is unlikely that we can solve such problems in time
polynomial in the input size.

Suppose each weight is specified using n bits. Then the input
size is m = n2. The running time of the Dynamic
Programming algorithm is O(n · 2n)!

Advantage of DP solution: For certain problems where W is
small (e.g., small constant independent of n), we get a fast
algorithm.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Example:

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Suppose our home city is city 1
How many different tours are possible?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Suppose our home city is city 1
How many different tours are possible? (n − 1)!
Let S be a subset of cities containing city 1 and city j
Let T (S , j) denote the shortest path between cities 1 and j such
that all cities in S are visited once on this path.
Try writing T (S , j) in terms of T (S ′, j ′) where |S |′ is smaller than
|S |

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Suppose our home city is city 1
How many different tours are possible? (n − 1)!
Let S be a subset of cities containing city 1 and city j
Let T (S , j) denote the shortest path between cities 1 and j such
that all cities in S are visited once on this path.
T (S , j) = mini∈S ,i 6=j {T (S − {j}, i) + d(i , j)}

The first city on the path above is 1 and the last city is j . Check
all possibilities for second-to-last city.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Algorithm

TSP-length

- T ({1}, 1)← 0
- For s = 2 to n

- For all subsets S of {1, ..., n} of size s containing 1
- T (S , 1)←∞
- For all j ∈ S s.t. j 6= 1

- T (S , j)← mini∈S ,i 6=j {T (S − {j}, i) + d(i , j)}
- return(minj {T ({1, ..., n}, j) + d(1, j)})

What is the running time of the above algoithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Dynamic Programming
Traveling Salesperson

Problem

Traveling Salesperson: There are n cities and all the inter-city
distances are given.Let D(i , j) denote the distance between cities i and
j . You are a salesperson and would like to visit each of the n cities
starting and ending at your home city. Give a tour that minimizes the
total distance you have to travel.

Algorithm

TSP-length

- T ({1}, 1)← 0
- For s = 2 to n

- For all subsets S of {1, ..., n} of size s containing 1
- T (S , 1)←∞
- For all j ∈ S s.t. j 6= 1

- T (S , j)← mini∈S ,i 6=j {T (S − {j}, i) + d(i , j)}
- return(minj {T ({1, ..., n}, j) + d(1, j)})

What is the running time of the above algoithm? O(n2 · 2n)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Course Overview

Graph Algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Main Idea

Main Idea: Reduction
1 We will obtain an algorithm A for a Network Flow problem.
2 Given a new problem, we will rephrase this problem as a

Network Flow problem.
3 We will then use algorithm A to solve the rephrased problem

and obtain a solution.
4 Finally, we build a solution for the original problem using the

solution to the rephrased problem.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Introduction

We want to model various kinds of networks using graphs and
then solve real world problems with respect to these networks
by studying the underlying graph.

One problem that arises in network design is routing “flows”
within the network.

Transportation Network: Vertices are cities and edges denote
highways. Every highway has certain traffic capacity. We are
interested in knowing the maximum amount commodity that
can be shipped from a source city to a destination city.
Computer Networks: Edges are links and vertices are switches.
Each link has some capacity of carrying packets. Again, we are
interested in knowing how much traffic can a source node send
to a destination node.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Given such a graph, an “s − t flow” in the graph is a function
f that maps the edges to non-negative real numbers such that
the following properties are satisfied:

(a) Capacity constraint: For every edge e, 0 ≤ f (e) ≤ c(e).
(b) Flow conservation: For every internal node v :∑

e into v

f (e) =
∑

e out of v

f (e)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f) =
∑

e out of s

f (e)

Example:

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f) =
∑

e out of s

f (e)

Example:

Figure: Routing 20 units of flow from s to t. Is it possible to “push more
flow”?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

