
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

How do we define the subproblems?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Similarly, we can define L(i , 1) for 1 < i ≤ n.
Can we say something similar for L(i , j) for i , j 6= 1?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Similarly, we can define L(i , 1) for 1 < i ≤ n.
Can we say something similar for L(i , j) for i , j 6= 1?

Claim 1: If S [i ] = T [j ], then L(i , j) = 1 + L(i − 1, j − 1).
Claim 2: If S [i ] 6= T [j ], then L(i , j) = max {L(i − 1, j), L(i , j − 1)}.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Similarly, we can define L(i , 1) for 1 < i ≤ n.
Can we say something similar for L(i , j) for i , j 6= 1?

Claim 1: If S [i ] = T [j ], then L(i , j) = 1 + L(i − 1, j − 1).
Claim 2: If S [i ] 6= T [j ], then L(i , j) = max {L(i − 1, j), L(i , j − 1)}.

Figure: The arrows show the dependencies between subproblems.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Algorithm

Length-LCS(S, T)

- If (S [1] = T [1]), then L[1, 1]← 1 else L[1, 1]← 0
- For j = 2 to m

- If (S [1] = T [j ]), then L[1, j ]← 1 else L[1, j ]← L[1, j − 1]
- For i = 2 to n

- If (S [i ] = T [1]), then L[i , 1]← 1 else L[i , 1]← L[i − 1, 1]
- For i = 2 to n

- For j = 2 to m
- If (S [i ] = T [j ]) then L[i , j ]← 1 + L[i − 1, j − 1]

else L[i , j ]← max {L[i − 1, j ], L[i , j − 1]}
- Return(L[n,m])

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

How do we find a longest common subsequence?

Figure: Array P is used to maintain the pointers to the appropriate
subproblem. The blue squares give the position of the characters in a longest
common subsequence.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example: S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T . This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Claim 1: If i = 0 or j = 0, then L(i , j) = 0.
Claim 2: If S [i ] = T [j ], then L(i , j) = 1 + L(i − 1, j − 1).
Claim 3: If S [i ] 6= T [j ], then
L(i , j) = max {L(i − 1, j), L(i , j − 1)}.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Claim 1: If i = 0 or j = 0, then L(i , j) = 0.
Claim 2: If S [i ] = T [j ], then L(i , j) = 1 + L(i − 1, j − 1).
Claim 3: If S [i ] 6= T [j ], then
L(i , j) = max {L(i − 1, j), L(i , j − 1)}.
Here is a simple recursive program to find the length of the
longest common subsequence.

Algorithm

LCS-rec(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (S [n] = S [m]) return(1 + LCS-rec(S , n − 1,T ,m − 1))
- If (S [n] 6= T [m])

return(max{LCS-rec(S , n,T ,m − 1), LCS-rec(S , n − 1,T ,m)})

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (S [n] = S [m]) return(1 + LCS-rec(S , n − 1,T ,m − 1))
- If (S [n] 6= T [m])

return(max{LCS-rec(S , n,T ,m − 1), LCS-rec(S , n − 1,T ,m)})

What is the running time of this algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (S [n] = S [m]) return(1 + LCS-rec(S , n − 1,T ,m − 1))
- If (S [n] 6= T [m])

return(max{LCS-rec(S , n,T ,m − 1), LCS-rec(S , n − 1,T ,m)})

What is the running time of this algorithm?

This is exponentially large!

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (S [n] = S [m]) return(1 + LCS-rec(S , n − 1,T ,m − 1))
- If (S [n] 6= T [m])

return(max{LCS-rec(S , n,T ,m − 1), LCS-rec(S , n − 1,T ,m)})

Here is a memoized version of the above algorithm.

Algorithm

LCS-mem(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (L[n,m] is known) then return(L[n,m])
- If (S [n] = S [m])

- length← 1 + LCS-mem(S , n − 1,T ,m − 1)
- If (S [n] 6= T [m])

- length← max{LCS-mem(S , n,T ,m − 1),
LCS-mem(S , n − 1,T ,m)}

- L[n,m]← length
- return(length)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Here is a memoized version of the recursive algorithm.

Algorithm

LCS-mem(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (L[n,m] is known) then return(L[n,m])
- If (S [n] = S [m])

- length← 1 + LCS-mem(S , n − 1,T ,m − 1)
- If (S [n] 6= T [m])

- length← max{LCS-mem(S , n,T ,m − 1),
LCS-mem(S , n − 1,T ,m)}

- L[n,m]← length
- return(length)

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Here is a memoized version of the recursive algorithm.

Algorithm

LCS-mem(S , n,T ,m)

- If (n = 0 OR m = 0) then return(0)
- If (L[n,m] is known) then return(L[n,m])
- If (S [n] = S [m])

- length← 1 + LCS-mem(S , n − 1,T ,m − 1)
- If (S [n] 6= T [m])

- length← max{LCS-mem(S , n,T ,m − 1),
LCS-mem(S , n − 1,T ,m)}

- L[n,m]← length
- return(length)

What is the running time of the above algorithm? O(nm)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

Example: Let ({1, 2, 3, 5, 6, 7}, 10) be the input instance.
What is the optimal solution?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

Example: Let ([1, 2, 3, 5, 6, 7], 10) be the input instance.
What is the optimal solution?{2, 3, 4}

Since w(2) = 2,w(3) = 3,w(4) = 5 and
w(2) + w(3) + w(4) = 10.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

How do we define the subproblems for the Dynamic Program?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

How do we define the subproblems for the Dynamic Program?
Let us try the following:

M(i): The maximum weight that can be filled using items
{1, ..., i} subject to the sum being ≤W .
How do we define M(i) in terms of M(1), ...,M(i − 1)?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

How do we define the subproblems for the Dynamic Program?
Let us try the following:

M(i): The maximum weight that can be filled using items
{1, ..., i} subject to the sum being ≤W .
How do we define M(i) in terms of M(1), ...,M(i − 1)?

Case 1: i th item is not in the optimal solution. Then
M(i) = M(i − 1).
Case 2: i th item is in the optimal solution. There is a problem
here.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

How do we define the subproblems for the Dynamic Program?
Let us try the following:

M(i ,w): The maximum weight that can be filled using items
{1, ..., i} subject to the sum being ≤ w .
Recursive formulation:

Case 1: i th item is not in the optimal solution. Then
M(i ,w) = M(i − 1,w).
Case 2: i th item is in the optimal solution. Then
M(i ,w) = M(i − 1,w − w(i)) + w(i)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

Dynamic Programming solution:

M(i ,w): The maximum weight that can be filled using items
{1, ..., i} subject to the sum being ≤ w .
If w(i) > w , then M(i ,w) = M(i − 1,w)
If w(i) ≤ w , then
M(i ,w) = max {M(i − 1,w),M(i − 1,w − w(i)) + w(i)}
∀w ≤W , M(1,w) = w(1) if w(1) ≤ w and 0 otherwise.

What is the running time for filling the above table?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
0-1 Knapsack

Problem

You are given n items with non-negative integer weights w(i) and an
integer W . You have to determine a subset S of {1, ..., n} such that∑

i∈S w(i) is maximized subject to
∑

i∈S w(i) ≤W .

Dynamic Programming solution:

M(i ,w): The maximum weight that can be filled using items
{1, ..., i} subject to the sum being ≤ w .
If w(i) > w , then M(i ,w) = M(i − 1,w)
If w(i) ≤ w , then
M(i ,w) = max {M(i − 1,w),M(i − 1,w − w(i)) + w(i)}
∀w ≤W , M(1,w) = w(1) if w(1) ≤ w and 0 otherwise.

What is the running time for filling the above table? O(n ·W )

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


