COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Dynamic Programming

Dynamic Programming
 Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- How do we define the subproblems?

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$

Dynamic Programming

Longest common subsequence

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=\mathrm{XYXZPQ}, T=\mathrm{YXQYXP}$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$
- Similarly, we can define $L(i, 1)$ for $1<i \leq n$.
- Can we say something similar for $L(i, j)$ for $i, j \neq 1$?

Dynamic Programming

Longest common subsequence

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is XYXP
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$
- Similarly, we can define $L(i, 1)$ for $1<i \leq n$.
- Can we say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 2: If $S[i] \neq T[j]$, then $L(i, j)=\max \{L(i-1, j), L(i, j-1)\}$.

Dynamic Programming

Longest common subsequence

- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$
- Similarly, we can define $L(i, 1)$ for $1<i \leq n$.
- Can we say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 2: If $S[i] \neq T[j]$, then $L(i, j)=\max \{L(i-1, j), L(i, j-1)\}$.

Figure: The arrows show the dependencies between subproblems.

Dynamic Programming

Longest common subsequence

Algorithm

Length-LCS (S, T)

- If $(S[1]=T[1])$, then $L[1,1] \leftarrow 1$ else $L[1,1] \leftarrow 0$
- For $j=2$ to m
- If $(S[1]=T[j])$, then $L[1, j] \leftarrow 1$ else $L[1, j] \leftarrow L[1, j-1]$
- For $i=2$ to n
- If $(S[i]=T[1])$, then $L[i, 1] \leftarrow 1$ else $L[i, 1] \leftarrow L[i-1,1]$
- For $i=2$ to n
- For $j=2$ to m
- If $(S[i]=T[j])$ then $L[i, j] \leftarrow 1+L[i-1, j-1]$ else $L[i, j] \leftarrow \max \{L[i-1, j], L[i, j-1]\}$
- Return(L[n,m])

Dynamic Programming

- How do we find a longest common subsequence?

Figure: Array P is used to maintain the pointers to the appropriate subproblem. The blue squares give the position of the characters in a longest common subsequence.

Dynamic Programming Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$
L

0	1	1	1	1	1
1					
1					
1					
1					
1					

P

Dynamic Programming
 Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$
L

0	1	1	1	1	1
1	1				
1					
1					
1					
1					

Dynamic Programming Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$
L

0	1	1	1	1	1
1	1	1			
1					
1					
1					
1					

P

Dynamic Programming
 Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$
L

0	1	1	1	1	1
1	1	1	2		
1					
1					
1					
1					

P

Dynamic Programming Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$
L

0	1	1	1	1	1
1	1	1	2	2	2
1					
1					
1					
1					

Dynamic Programming
 Longest common subsequence

- Example: $S=X Y X Z P Q, T=Y X Q Y X P$

L

0	1	1	1	1	1
1	1	1	2	2	2
1	2	2	2	3	3
1	2	2	2	3	3
1	2	2	2	3	4
1	2	3	3	3	4

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find a longest common subsequence in S and T. This is a longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Claim 1: If $i=0$ or $j=0$, then $L(i, j)=0$.
- Claim 2: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 3: If $S[i] \neq T[j]$, then

$$
L(i, j)=\max \{L(i-1, j), L(i, j-1)\} .
$$

Dynamic Programming

Longest common subsequence

- Claim 1: If $i=0$ or $j=0$, then $L(i, j)=0$.
- Claim 2: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 3: If $S[i] \neq T[j]$, then $L(i, j)=\max \{L(i-1, j), L(i, j-1)\}$.
- Here is a simple recursive program to find the length of the longest common subsequence.

Algorithm

```
LCS-rec(S,n,T,m)
    - If ( }n=0\mathrm{ OR m=0) then return(0)
    - If (S[n] = S[m]) return(1+ LCS-rec (S, n-1,T,m-1))
    - If (S[n]\not=T[m])
        return(max{LCS-rec(S,n,T,m-1), LCS-rec(S,n-1,T,m)})
```


Dynamic Programming

Longest common subsequence

Algorithm

```
\(\operatorname{LCS}-\mathrm{rec}(S, n, T, m)\)
    - If ( \(n=0\) OR \(m=0\) ) then return(0)
    - If \((S[n]=S[m])\) return \((1+\operatorname{LCS}-r e c(S, n-1, T, m-1))\)
    - If \((S[n] \neq T[m])\)
        return \((\max \{\operatorname{LCS}-\mathrm{rec}(S, n, T, m-1), \operatorname{LCS}-\mathrm{rec}(S, n-1, T, m)\})\)
```

- What is the running time of this algorithm?

Dynamic Programming

Longest common subsequence

Algorithm

```
\(\operatorname{LCS}-\mathrm{rec}(S, n, T, m)\)
    - If \((n=0\) OR \(m=0)\) then return(0)
    - If \((S[n]=S[m])\) return \((1+\operatorname{LCS}-r e c(S, n-1, T, m-1))\)
    - If \((S[n] \neq T[m])\)
        return \((\max \{\operatorname{LCS}-\operatorname{rec}(S, n, T, m-1), \operatorname{LCS}-\operatorname{rec}(S, n-1, T, m)\})\)
```

- What is the running time of this algorithm?
- This is exponentially large!

Dynamic Programming

Longest common subsequence

Algorithm

```
LCS-rec ( \(S, n, T, m\) )
    - If ( \(n=0\) OR \(m=0\) ) then return \((0)\)
    - If \((S[n]=S[m])\) return \((1+\operatorname{LCS}-r e c(S, n-1, T, m-1))\)
    - If \((S[n] \neq T[m])\)
        return(max\{LCS-rec \((S, n, T, m-1), \operatorname{LCS}-r e c(S, n-1, T, m)\})\)
```

- Here is a memoized version of the above algorithm.

Algorithm

LCS-mem (S, n, T, m)

- If ($n=0$ OR $m=0$) then return(0)
- If $(L[n, m]$ is known $)$ then $\operatorname{return}(L[n, m])$
- If $(S[n]=S[m])$

$$
\text { - length } \leftarrow 1+\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m-1)
$$

- If $(S[n] \neq T[m])$
- length $\leftarrow \max \{\operatorname{LCS}-\operatorname{mem}(S, n, T, m-1)$,

$$
\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m)\}
$$

$-L[n, m] \leftarrow$ length

- return(length)

Dynamic Programming

Longest common subsequence

- Here is a memoized version of the recursive algorithm.

Algorithm

```
LCS-mem ( \(S, n, T, m\) )
    - If ( \(n=0\) OR \(m=0\) ) then return( 0 )
    - If \((L[n, m]\) is known) then return \((L[n, m])\)
    - If \((S[n]=S[m])\)
    - length \(\leftarrow 1+\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m-1)\)
    - If \((S[n] \neq T[m])\)
    - length \(\leftarrow \max \{\operatorname{LCS}-m e m(S, n, T, m-1)\),
        \(\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m)\}\)
    \(-L[n, m] \leftarrow\) length
    - return(length)
```

- What is the running time of the above algorithm?

Dynamic Programming

Longest common subsequence

- Here is a memoized version of the recursive algorithm.

Algorithm

```
LCS-mem ( \(S, n, T, m\) )
    - If ( \(n=0\) OR \(m=0\) ) then return( 0 )
    - If \((L[n, m]\) is known) then return \((L[n, m])\)
    - If \((S[n]=S[m])\)
    - length \(\leftarrow 1+\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m-1)\)
    - If \((S[n] \neq T[m])\)
    - length \(\leftarrow \max \{\operatorname{LCS}-m e m(S, n, T, m-1)\),
        \(\operatorname{LCS}-\operatorname{mem}(S, n-1, T, m)\}\)
    \(-L[n, m] \leftarrow\) length
    - return(length)
```

- What is the running time of the above algorithm? $O(n m)$

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Example: Let $(\{1,2,3,5,6,7\}, 10)$ be the input instance.
- What is the optimal solution?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Example: Let ([1, 2, 3, 5, 6, 7], 10) be the input instance.
- What is the optimal solution? $\{2,3,4\}$
- Since $w(2)=2, w(3)=3, w(4)=5$ and

$$
w(2)+w(3)+w(4)=10
$$

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq W$.
- How do we define $M(i)$ in terms of $M(1), \ldots, M(i-1)$?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq W$.
- How do we define $M(i)$ in terms of $M(1), \ldots, M(i-1)$?
- Case 1: $i^{\text {th }}$ item is not in the optimal solution. Then $M(i)=M(i-1)$.
- Case 2: $i^{\text {th }}$ item is in the optimal solution. There is a problem here.

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- How do we define the subproblems for the Dynamic Program?
- Let us try the following:
- $M(i, w)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- Recursive formulation:
- Case 1: $i^{t h}$ item is not in the optimal solution. Then

$$
M(i, w)=M(i-1, w)
$$

- Case 2: $i^{\text {th }}$ item is in the optimal solution. Then $M(i, w)=M(i-1, w-w(i))+w(i)$

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Dynamic Programming solution:
- $M(i, w)$: The maximum weight that can be filled using items
$\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- If $w(i)>w$, then $M(i, w)=M(i-1, w)$
- If $w(i) \leq w$, then

$$
M(i, w)=\max \{M(i-1, w), M(i-1, w-w(i))+w(i)\}
$$

- $\forall w \leq W, M(1, w)=w(1)$ if $w(1) \leq w$ and 0 otherwise.

- What is the running time for filling the above table?

Dynamic Programming
 0-1 Knapsack

Problem

You are given n items with non-negative integer weights $w(i)$ and an integer W. You have to determine a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w(i)$ is maximized subject to $\sum_{i \in S} w(i) \leq W$.

- Dynamic Programming solution:
- $M(i, w)$: The maximum weight that can be filled using items $\{1, \ldots, i\}$ subject to the sum being $\leq w$.
- If $w(i)>w$, then $M(i, w)=M(i-1, w)$
- If $w(i) \leq w$, then
$M(i, w)=\max \{M(i-1, w), M(i-1, w-w(i))+w(i)\}$
- $\forall w \leq W, M(1, w)=w(1)$ if $w(1) \leq w$ and 0 otherwise.

- What is the running time for filling the above table? $O(n \cdot W)$

End

