COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Course Overview

- Algorithm Design Techniques:
- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows
- Computational Intractability

Dynamic Programming

Dynamic Programming

- Main idea: Break the given problem in to a few sub-problems and combine the solutions of the smaller sub-problems to get solutions to larger ones.
- How is it different than Divide and Conquer?
- Here you are allowed overlapping sub-problems.
- Suppose your recursive algorithm gives a recursion tree that has many common sub-problems (e.g., recursion for computing Fibonacci numbers), then it helps to save the solution of sub-problems and use this solution whenever the same sub-problem is called.
- Dynamic programming algorithms are also called table-filling algorithms

Dynamic Programming
 Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of integers $A[1], A[2], \ldots, A[n]$ and you are asked to find the longest increasing subsequence of integers.

- Example: The longest increasing subsequence of the sequence $\overline{(7,2,8,6}, 3,6,9,7)$ is ?

Dynamic Programming
 Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of integers $A[1], A[2], \ldots, A[n]$ and you are asked to find the longest increasing subsequence of integers.

- Example: The longest increasing subsequence of the sequence $\overline{(7,2,8,6}, 3,6,9,7)$ is $(2,3,6,7)$
- Let $L(i)$ denote the length of the longest increasing subsequence that ends with the number $A[i]$
- What is $L(1)$?

Dynamic Programming

Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of integers $A[1], A[2], \ldots, A[n]$ and you are asked to find the longest increasing subsequence of integers.

- Example: The longest increasing subsequence of the sequence $(7,2,8,6,3,6,9,7)$ is $(2,3,6,7)$
- Let $L(i)$ denote the length of the longest increasing subsequence that ends with the number $A[i]$
- What is $L(1) ? L(1)=1$
- What is the value of $L(i)$ in terms of $L(1), \ldots L(i-1)$?

Dynamic Programming

Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of integers $A[1], A[2], \ldots, A[n]$ and you are asked to find the longest increasing subsequence of integers.

- Example: The longest increasing subsequence of the sequence $\overline{(7,2,8,6}, 3,6,9,7)$ is $(2,3,6,7)$
- Let $L(i)$ denote the length of the longest increasing subsequence that ends with the number $A[i]$
- What is $L(1)$? $L(1)=1$
- What is the value of $L(i)$ in terms of $L(1), \ldots L(i-1)$?

$$
L(i)=1+\max _{j<i \text { and } A[j] \leq A[j]}\{L(j)\}
$$

- Note that if the set $\{j: j<i$ and $A[j] \leq A[i]\}$ is empty, then the second term on the RHS is 0 .

Dynamic Programming

- Let $n=9$ and $(A[1], \ldots, A[9])=(7,2,8,6,3,1,10,9,11)$
- $L(1)=$?
- $L(2)=$?
- $L(3)=$?
- $L(4)=$?
- $L(5)=$?
- $L(6)=$?
- $L(7)=$?
- $L(8)=$?
- $L(9)=$?

Dynamic Programming

- Let $n=9$ and $(A[1], \ldots, A[9])=(7,2,8,6,3,1,10,9,11)$
- $L(1)=1$
- $L(2)=1$
- $L(3)=2$
- $L(4)=2$
- $L(5)=2$
- $L(6)=1$
- $L(7)=1+\max \{1,1,2,2,2,1\}=3$
- $L(8)=1+\max \{1,1,2,2,2,1\}=3$
- $L(9)=1+\max \{1,1,2,2,2,1,3,3\}=4$
- What is the length of the longest increasing subsequence?

Dynamic Programming

- Let $n=9$ and $(A[1], \ldots, A[9])=(7,2,8,6,3,1,10,9,11)$
- $L(1)=1$
- $L(2)=1$
- $L(3)=2$
- $L(4)=2$
- $L(5)=2$
- $L(6)=1$
- $L(7)=1+\max \{1,1,2,2,2,1\}=3$
- $L(8)=1+\max \{1,1,2,2,2,1\}=3$
- $L(9)=1+\max \{1,1,2,2,2,1,3,3\}=4$
- What is the length of the longest increasing subsequence?

$$
\max _{1 \leq j \leq n} L(j)
$$

Dynamic Programming
 Longest increasing subsequence

Algorithm

Length-LIS-recursive (A, n)

- If ($n=1$) return(1)
$-\max \leftarrow 1$
- For $j=(n-1)$ to 1
- If $(A[j] \leq A[n])$
$-s \leftarrow$ Length-LIS-recursive (A, j)
- If $(\max <s+1) \max \leftarrow s+1$
- return (\max)
- What is the running time of this algorithm?

Dynamic Programming
 Longest increasing subsequence

```
Algorithm
Length-LIS-recursive ( \(A, n\) )
    - If ( \(n=1\) ) return(1)
    - \(\max \leftarrow 1\)
    - For \(j=(n-1)\) to 1
    - If \((A[j] \leq A[n])\)
    \(-s \leftarrow\) Length-LIS-recursive \((A, j)\)
    - If \((\max <s+1) \max \leftarrow s+1\)
    - return(max)
```

- What is the running time of this algorithm?

$$
\text { - } T(n)=T(n-1)+T(n-2)+\ldots+T(1)
$$

Dynamic Programming

Longest increasing subsequence

Algorithm

Length-LIS-recursive (A, n)

- If ($n=1$) return(1)
- $\max \leftarrow 1$
- For $j=(n-1)$ to 1
- If $(A[j] \leq A[n])$
$-s \leftarrow$ Length-LIS-recursive (A, j)
- If $(\max <s+1) \max \leftarrow s+1$
- return(max)
- What is the running time of this algorithm?
- $T(n)=T(n-1)+T(n-2)+\ldots+T(1)$
- $T(n)=2^{O(n)}$

Dynamic Programming

Longest increasing subsequence

```
Algorithm
Length-LIS-recursive ( \(A, n\) )
    - If \((n=1)\) return(1)
    - max \(\leftarrow 1\)
    - For \(j=(n-1)\) to 1
    - If \((A[j] \leq A[n])\)
            \(-s \leftarrow\) Length-LIS-recursive \((A, j)\)
            - If \((\max <s+1) \max \leftarrow s+1\)
    - return (max)
```

- What is the running time of this algorithm?
- $T(n)=T(n-1)+T(n-2)+\ldots+T(1)$
- $T(n)=2^{O(n)}$
- Lot of nodes in the recursion tree are repeated.

Dynamic Programming
 Longest increasing subsequence

```
Algorithm
Length-LIS \((A, n)\)
    - For \(i=1\) to \(n\)
    - \(\max \leftarrow 1\)
    - For \(j=1\) to \((i-1)\)
        - If \((A[j] \leq A[i])\)
        - If \((\max <L[j]+1) \max \leftarrow L[j]+1\)
        \(-L[i] \leftarrow \max\)
```

 - return the maximum of \(L[i]\) 's
 - What is the running time of this algorithm?

Dynamic Programming
 Longest increasing subsequence

```
Algorithm
Length-LIS \((A, n)\)
    - For \(i=1\) to \(n\)
    - \(\max \leftarrow 1\)
    - For \(j=1\) to \((i-1)\)
        - If \((A[j] \leq A[i])\)
        - If \((\max <L[j]+1) \max \leftarrow L[j]+1\)
    \(-L[i] \leftarrow \max\)
```

 - return the maximum of \(L[i]\) 's
 - What is the running time of this algorithm?

$$
\text { - } T(n)=O\left(n^{2}\right)
$$

- But the problem was to find the longest increasing subsequence and not the length!

Dynamic Programming

Longest increasing subsequence

Algorithm

$\operatorname{LIS}(A, n)$

- For $i=1$ to n
$-\max \leftarrow 1$
- $P[i] \leftarrow i$
- For $j=1$ to $(i-1)$
- If $(A[j] \leq A[i])$
- If $(\max <L[j]+1)$
$-\max \leftarrow L[j]+1$
- $P[i] \leftarrow j$
$-L[i] \leftarrow \max$
- ... // Use P to output the longest increasing subsequence
- But the problem was to find the longest increasing subsequence and not the length!
- For each number, we just note down the index of the number preceding this number in a longest increasing subsequence.

Dynamic Programming

Longest increasing subsequence

	1		2	3	4	5	6	7	8	9
A	7	2	8	6	3	1	9	7	10	
	L	1	1	2	2	2	1	3	3	4
P	1	2	1	2	2	6	3	4	7	

Algorithm

$\operatorname{LIS}(A, n)$

- For $i=1$ to n
- $\max \leftarrow 1$
$-P[i] \leftarrow i$
- For $j=1$ to $(i-1)$
- If $(A[j] \leq A[i])$
- If $(\max <L[j]+1)$
$-\max \leftarrow L[j]+1$
- $P[i] \leftarrow j$
$-L[i] \leftarrow \max$
- ... // Use P to output the longest increasing subsequence

Dynamic Programming
 Longest increasing subsequence

- So, one of the longest increasing subsequence is $(7,8,9,10)$.

Dynamic Programming
 Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- How do we define the subproblems?

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.

Dynamic Programming

Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence in S and T. This is the longest sequence of characters (not necessarily contiguous) that appear in both S and T.

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$

Dynamic Programming

Longest common subsequence

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is $X Y X P$
- $S=\mathrm{XYXZPQ}, T=\mathrm{YXQYXP}$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$
- Similarly, we can define $L(i, 1)$ for $1<i \leq n$.
- Can we say something similar for $L(i, j)$ for $i, j \neq 1$?

Dynamic Programming

Longest common subsequence

- Example $S=X Y X Z P Q, T=Y X Q Y X P$
- The longest common subsequence is XYXP
- $S=X Y X Z P Q, T=Y X Q Y X P$
- Let $L(i, j)$ denote the length of the longest common subsequence in strings $S[1], \ldots, S[i]$ and $T[1], \ldots, T[j]$.
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $T[1], \ldots, T[j], 0$ otherwise.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)($ with $L(1,0)=0)$
- Similarly, we can define $L(i, 1)$ for $1<i \leq n$.
- Can we say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 2: If $S[i] \neq T[j]$, then $L(i, j)=\max \{L(i-1, j), L(i, j-1)\}$.

End

