
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Course Overview

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Main Ideas

Main idea: Break the given problem in to a few sub-problems
and combine the solutions of the smaller sub-problems to get
solutions to larger ones.

How is it different than Divide and Conquer?

Here you are allowed overlapping sub-problems.

Suppose your recursive algorithm gives a recursion tree that
has many common sub-problems (e.g., recursion for
computing Fibonacci numbers), then it helps to save the
solution of sub-problems and use this solution whenever the
same sub-problem is called.

Dynamic programming algorithms are also called table-filling
algorithms

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of
integers A[1],A[2], ...,A[n] and you are asked to find the longest
increasing subsequence of integers.

Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is ?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of
integers A[1],A[2], ...,A[n] and you are asked to find the longest
increasing subsequence of integers.

Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7)

Let L(i) denote the length of the longest increasing
subsequence that ends with the number A[i ]

What is L(1)?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of
integers A[1],A[2], ...,A[n] and you are asked to find the longest
increasing subsequence of integers.

Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7)

Let L(i) denote the length of the longest increasing
subsequence that ends with the number A[i ]

What is L(1)? L(1) = 1

What is the value of L(i) in terms of L(1), ...L(i − 1)?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of
integers A[1],A[2], ...,A[n] and you are asked to find the longest
increasing subsequence of integers.

Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7)

Let L(i) denote the length of the longest increasing
subsequence that ends with the number A[i ]

What is L(1)? L(1) = 1

What is the value of L(i) in terms of L(1), ...L(i − 1)?

L(i) = 1 + max
j<i and A[j]≤A[j]

{L(j)}

Note that if the set {j : j < i and A[j ] ≤ A[i ]} is empty, then
the second term on the RHS is 0.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Let n = 9 and (A[1], ...,A[9]) = (7, 2, 8, 6, 3, 1, 10, 9, 11)

L(1) =?
L(2) =?
L(3) =?
L(4) =?
L(5) =?
L(6) =?
L(7) =?
L(8) =?
L(9) =?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Let n = 9 and (A[1], ...,A[9]) = (7, 2, 8, 6, 3, 1, 10, 9, 11)

L(1) = 1
L(2) = 1
L(3) = 2
L(4) = 2
L(5) = 2
L(6) = 1
L(7) = 1 + max{1, 1, 2, 2, 2, 1} = 3
L(8) = 1 + max{1, 1, 2, 2, 2, 1} = 3
L(9) = 1 + max{1, 1, 2, 2, 2, 1, 3, 3} = 4

What is the length of the longest increasing subsequence?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Let n = 9 and (A[1], ...,A[9]) = (7, 2, 8, 6, 3, 1, 10, 9, 11)

L(1) = 1
L(2) = 1
L(3) = 2
L(4) = 2
L(5) = 2
L(6) = 1
L(7) = 1 + max{1, 1, 2, 2, 2, 1} = 3
L(8) = 1 + max{1, 1, 2, 2, 2, 1} = 3
L(9) = 1 + max{1, 1, 2, 2, 2, 1, 3, 3} = 4

What is the length of the longest increasing subsequence?

max
1≤j≤n

L(j)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS-recursive(A, n)
- If (n = 1) return(1)
- max ← 1
- For j = (n − 1) to 1

- If (A[j ] ≤ A[n])
- s ← Length-LIS-recursive(A, j)
- If (max < s + 1) max ← s + 1

- return(max)

What is the running time of this algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS-recursive(A, n)
- If (n = 1) return(1)
- max ← 1
- For j = (n − 1) to 1

- If (A[j ] ≤ A[n])
- s ← Length-LIS-recursive(A, j)
- If (max < s + 1) max ← s + 1

- return(max)

What is the running time of this algorithm?

T (n) = T (n − 1) + T (n − 2) + ... + T (1)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS-recursive(A, n)
- If (n = 1) return(1)
- max ← 1
- For j = (n − 1) to 1

- If (A[j ] ≤ A[n])
- s ← Length-LIS-recursive(A, j)
- If (max < s + 1) max ← s + 1

- return(max)

What is the running time of this algorithm?

T (n) = T (n − 1) + T (n − 2) + ... + T (1)
T (n) = 2O(n)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS-recursive(A, n)
- If (n = 1) return(1)
- max ← 1
- For j = (n − 1) to 1

- If (A[j ] ≤ A[n])
- s ← Length-LIS-recursive(A, j)
- If (max < s + 1) max ← s + 1

- return(max)

What is the running time of this algorithm?

T (n) = T (n − 1) + T (n − 2) + ... + T (1)
T (n) = 2O(n)

Lot of nodes in the recursion tree are repeated.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS(A, n)
- For i = 1 to n

- max ← 1
- For j = 1 to (i − 1)

- If (A[j ] ≤ A[i ])
- If (max < L[j ] + 1) max ← L[j ] + 1

- L[i ]← max
- return the maximum of L[i ]’s

What is the running time of this algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

Length-LIS(A, n)
- For i = 1 to n

- max ← 1
- For j = 1 to (i − 1)

- If (A[j ] ≤ A[i ])
- If (max < L[j ] + 1) max ← L[j ] + 1

- L[i ]← max
- return the maximum of L[i ]’s

What is the running time of this algorithm?

T (n) = O(n2)

But the problem was to find the longest increasing subsequence
and not the length!

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

LIS(A, n)
- For i = 1 to n

- max ← 1
- P[i ]← i
- For j = 1 to (i − 1)

- If (A[j ] ≤ A[i ])
- If (max < L[j ] + 1)

- max ← L[j ] + 1
- P[i ]← j

- L[i ]← max
- ... // Use P to output the longest increasing subsequence

But the problem was to find the longest increasing subsequence
and not the length!
For each number, we just note down the index of the number
preceding this number in a longest increasing subsequence.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

Algorithm

LIS(A, n)
- For i = 1 to n

- max ← 1
- P[i ]← i
- For j = 1 to (i − 1)

- If (A[j ] ≤ A[i ])
- If (max < L[j ] + 1)

- max ← L[j ] + 1
- P[i ]← j

- L[i ]← max
- ... // Use P to output the longest increasing subsequence

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest increasing subsequence

So, one of the longest increasing subsequence is (7, 8, 9, 10).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

How do we define the subproblems?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find the longest common subsequence in S and T . This is
the longest sequence of characters (not necessarily contiguous) that
appear in both S and T .

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Similarly, we can define L(i , 1) for 1 < i ≤ n.
Can we say something similar for L(i , j) for i , j 6= 1?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Dynamic Programming
Longest common subsequence

Example S = XYXZPQ, T = YXQYXP

The longest common subsequence is XYXP
S = XYXZPQ, T = YXQYXP

Let L(i , j) denote the length of the longest common subsequence
in strings S [1], ...,S [i ] and T [1], ...,T [j ].
What is L(1, j) for 1 < j ≤ m?

1 if S [1] is present in the string T [1], ...,T [j ], 0 otherwise.
1 if S [1] = T [j ] else L(1, j) = L(1, j − 1) (with L(1, 0) = 0)

Similarly, we can define L(i , 1) for 1 < i ≤ n.
Can we say something similar for L(i , j) for i , j 6= 1?

Claim 1: If S [i ] = T [j ], then L(i , j) = 1 + L(i − 1, j − 1).
Claim 2: If S [i ] 6= T [j ], then L(i , j) = max {L(i − 1, j), L(i , j − 1)}.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


