COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Divide and Conquer

Divide and Conquer

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and
$B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

Divide and Conquer

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and $B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

- We have to obtain the polynomial $C(x)=A(x) \cdot B(x)$
- $C(x)$ may be written as:

$$
C(x)=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\ldots+c_{2 n-2} \cdot x^{2 n-2}
$$

- What is c_{i} in terms of coefficients of A and B ?

Divide and Conquer

Fast Fourier Transform

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and $B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

- We have to obtain the polynomial $C(x)=A(x) \cdot B(x)$
- $C(x)$ may be written as:
$C(x)=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\ldots+c_{2 n-2} \cdot x^{2 n-2}$
- What is c_{i} in terms of coefficients of A and B ?
- $c_{i}=a_{i} \cdot b_{0}+a_{i-1} \cdot b_{1}+\ldots+a_{0} \cdot b_{i}$
- The vector $\left(c_{0}, \ldots, c_{2 n-2}\right)$ is called the convolution of vectors $\left(a_{0}, \ldots, a_{n-1}\right)$ and $\left(b_{0}, \ldots, b_{n-1}\right)$.

Divide and Conquer

Algorithm

$$
\begin{aligned}
& \text { SimpleMultiply }\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right) \\
& \quad \text { - For } i=0 \text { to } 2 n-2 \\
& \quad-\text { For } j=0 \text { to } i \\
& \quad-c_{i} \leftarrow c_{i}+a_{j} \cdot b_{i-j} \\
& \text { - return }\left(\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)\right)
\end{aligned}
$$

- What is the running time of the above algorithm?

Divide and Conquer

Algorithm

$$
\begin{aligned}
& \text { SimpleMultiply }\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right) \\
& \text { - For } i=0 \text { to } 2 n-2 \\
& \quad \text { - For } j=0 \text { to } i \\
& \quad-c_{i} \leftarrow c_{i}+a_{j} \cdot b_{i-j} \\
& \text { - return }\left(\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)\right)
\end{aligned}
$$

- What is the running time of the above algorithm? $O\left(n^{2}\right)$
- Is there another way to compute the polynomial $C(x)$?

Divide and Conquer

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
$-$
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.

Divide and Conquer

Fast Fourier Transform

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
- :
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.
- How fast can you compute $A(s)$ given value of s ?

Divide and Conquer

Fast Fourier Transform

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
- :
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.
- How fast can you compute $A(s)$ given value of s ?
- $O(n)$ arithmetic operations using Horner's rule.
- $A(s)=a_{0}+s \cdot\left(a_{1}+s \cdot\left(a_{2}+\ldots+s \cdot\left(a_{n-1}\right) \ldots\right)\right)$

Divide and Conquer
 Fast Fourier Transform

Divide and Conquer

Fast Fourier Transform

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?

Divide and Conquer

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?
- Fact: A square matrix is invertible iff its determinant is non-zero.

Divide and Conquer

Fast Fourier Transform

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?
- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.

Divide and Conquer

- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.
- Claim 1: For any Vandermonde matrix V shown below,

$$
V=\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right)
$$

$\operatorname{Det}(V)=\prod_{1 \leq j<i \leq 2 n}\left(s_{i}-s_{j}\right)$.

Divide and Conquer

Fast Fourier Transform

- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.
- Claim 1: For any Vandermonde matrix V shown below,

$$
V=\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right)
$$

$\operatorname{Det}(V)=\prod_{1 \leq j<i \leq 2 n}\left(s_{i}-s_{j}\right)$.

- So, as long as we use distict values of $s_{1}, \ldots, s_{2 n}$, we will be able to do polynomial interpolation.

Divide and Conquer

Fast Fourier Transform

Divide and Conquer

Divide and Conquer

Fast Fourier Transform

- Example of polynomial evaluation:
- $A(x)=3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}+2 x^{6}+x^{7}$
- $A(x)=\left(3+6 x^{2}+x^{4}+2 x^{6}\right)+x \cdot\left(4+2 x^{2}+10 x^{4}+x^{6}\right)$
- Let $A_{0}(x)=3+6 x^{2}+x^{4}+2 x^{6}$
- Let $A_{1}(x)=4+2 x^{2}+10 x^{4}+x^{6}$
- How do we compute $A(1)$?
- $A_{0}(1)=12, A_{1}(1)=17$.
- So, $A(1)=A_{0}(1)+1 \cdot A_{1}(1)=12+17=29$.
- Now, suppose we want to compute $A(-1)$.

$$
\begin{aligned}
A(-1) & =A_{0}(-1)+(-1) \cdot A_{1}(-1) \\
& =A_{0}(1)+(-1) \cdot A_{1}(1) \\
& =12-17=-5
\end{aligned}
$$

Divide and Conquer

Fast Fourier Transform

- Example of polynomial evaluation:
- $A(x)=3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}+2 x^{6}+x^{7}$
- $A(x)=\left(3+6 x^{2}+x^{4}+2 x^{6}\right)+x \cdot\left(4+2 x^{2}+10 x^{4}+x^{6}\right)$
- Let $A_{0}(x)=3+6 x^{2}+x^{4}+2 x^{6}$
- Let $A_{1}(x)=4+2 x^{2}+10 x^{4}+x^{6}$
- How do we compute $A(1)$?
- $A_{0}(1)=12, A_{1}(1)=17$.
- So, $A(1)=A_{0}(1)+1 \cdot A_{1}(1)=12+17=29$.
- Now, suppose we want to compute $A(-1)$.

$$
\begin{aligned}
A(-1) & =A_{0}(-1)+(-1) \cdot A_{1}(-1) \\
& =A_{0}(1)+(-1) \cdot A_{1}(1) \\
& =12-17=-5
\end{aligned}
$$

- If we want to compute A on $-1,1,-2,2,-3,3,-4,4$, then we only need to compute A_{0} and A_{1} on $1,2,3,4$.

Divide and Conquer

Fast Fourier Transform

- Example of polynomial evaluation:
- $A(x)=3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}+2 x^{6}+x^{7}$
- $A(x)=\left(3+6 x^{2}+x^{4}+2 x^{6}\right)+x \cdot\left(4+2 x^{2}+10 x^{4}+x^{6}\right)$
- Let $A_{0}(x)=3+6 x^{2}+x^{4}+2 x^{6}$
- Let $A_{1}(x)=4+2 x^{2}+10 x^{4}+x^{6}$

Divide and Conquer

Fast Fourier Transform

- Example of polynomial evaluation:
- $A(x)=3+4 x+6 x^{2}+2 x^{3}+x^{4}+10 x^{5}+2 x^{6}+x^{7}$
- $A(x)=\left(3+6 x^{2}+x^{4}+2 x^{6}\right)+x \cdot\left(4+2 x^{2}+10 x^{4}+x^{6}\right)$
- Let $A_{0}(x)=3+6 x^{2}+x^{4}+2 x^{6}$
- Let $A_{1}(x)=4+2 x^{2}+10 x^{4}+x^{6}$
- Let $A_{00}(x)=3+x^{4}, A_{01}(x)=6+2 x^{4}$
- Let $A_{10}(x)=4+10 x^{4}, A_{11}(x)=2+x^{4}$

Divide and Conquer

Fast Fourier Transform

Divide and Conquer

- Can we choose $s_{1}, \ldots, s_{2 n}$ in a more clever manner so that evaluating the polynomials A and B on these points cost fewer operations?
- We will use complex roots of unity!
- We will use $2 n$ roots of the equation

$$
x^{2 n}-1=0
$$

- $s_{1}=e^{1 \cdot \frac{2 \pi i}{2 n}}$
- $s_{2}=e^{2 \cdot \frac{2 \pi i}{2 n}}$
\bullet.
- $s_{j}=e^{j \cdot \frac{2 \pi i}{2 n}}$
-

Divide and Conquer

Fast Fourier Transform

- Let w be one of the $2 n$ roots of unity
- $A(w)=\left(a_{0}+a_{2} w^{2}+a_{4} w^{4}+\ldots\right)+w \cdot\left(a_{1}+a_{3} w^{2}+a_{5} w^{4}+\ldots\right)$
- $A(w)=A_{0}\left(w^{2}\right)+w \cdot A_{1}\left(w^{2}\right)$
- If we have $A_{0}\left(w^{2}\right)$ and $A_{1}\left(w^{2}\right)$, then computing $A(w)$ takes a constant number of operations.
- Suppose $T(n)$ denotes the worst case time to compute a polynomial at all $2 n$ roots of unity.
- Using the above equation, we can say that:

$$
T(n)=2 T(n / 2)+O(n)
$$

- Since w^{2} is one of the $n^{t h}$ roots of unity.

Divide and Conquer

Divide and Conquer

Fast Fourier Transform

- Claim 2: Let $w=e^{\frac{2 \pi i}{2 n}}$. Let V be the Vandermonde matrix w.r.t. the $2 n$ roots of unity. That is,

$$
V=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & \left(w^{1}\right)^{1} & \left(w^{1}\right)^{2} & \cdots & \left(w^{1}\right)^{2 n-1} \\
1 & \left(w^{2}\right)^{1} & \left(w^{2}\right)^{2} & \cdots & \left(w^{2}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \left(w^{2 n-1}\right)^{1} & \left(w^{2 n-1}\right)^{2} & \cdots & \left(w^{2 n-1}\right)^{2 n-1}
\end{array}\right)
$$

Then $\left[V^{-1}\right]_{i j}=\frac{w^{-i j}}{2 n}$. That is,

$$
V^{-1}=\frac{1}{2 n} \cdot\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & \left(w^{-1}\right)^{1} & \left(w^{-1}\right)^{2} & \ldots & \left(w^{-1}\right)^{2 n-1} \\
1 & \left(w^{-2}\right)^{1} & \left(w^{-2}\right)^{2} & \ldots & \left(w^{-2}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \left(w^{-(2 n-1)}\right)^{1} & \left(w^{-(2 n-1)}\right)^{2} & \ldots & \left(w^{-(2 n-1)}\right)^{2 n-1}
\end{array}\right)
$$

Divide and Conquer

Fast Fourier Transform

- We have
(1)

$$
V^{-1}=\frac{1}{2 n} \cdot\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & \left(w^{-1}\right)^{1} & \left(w^{-1}\right)^{2} & \ldots & \left(w^{-1}\right)^{2 n-1} \\
1 & \left(w^{-2}\right)^{1} & \left(w^{-2}\right)^{2} & \ldots & \left(w^{-2}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \left(w^{-(2 n-1)}\right)^{1} & \left(w^{-(2 n-1)}\right)^{2} & \ldots & \left(w^{-(2 n-1)}\right)^{2 n-1}
\end{array}\right)
$$

(2)

$$
V \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C(1) \\
C(w) \\
\vdots \\
C\left(w^{2 n-1}\right)
\end{array}\right)
$$

- How do we compute c_{i} 's?

Divide and Conquer
 \section*{Fast Fourier Transform}

Divide and Conquer

Fast Fourier Transform

End

