
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Problem

Given two polynomials:
A(x) = a0 + a1 · x + a2 · x2 + ... + an−1 · xn−1, and
B(x) = b0 + b1 · x + b2 · x2 + ... + bn−1 · xn−1, design an algorithm
to that outputs A(x) · B(x).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Problem

Given two polynomials:
A(x) = a0 + a1 · x + a2 · x2 + ... + an−1 · xn−1, and
B(x) = b0 + b1 · x + b2 · x2 + ... + bn−1 · xn−1, design an algorithm
to that outputs A(x) · B(x).

We have to obtain the polynomial C (x) = A(x) · B(x)

C (x) may be written as:
C (x) = c0 + c1 · x + c2 · x2 + ... + c2n−2 · x2n−2

What is ci in terms of coefficients of A and B?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Problem

Given two polynomials:
A(x) = a0 + a1 · x + a2 · x2 + ... + an−1 · xn−1, and
B(x) = b0 + b1 · x + b2 · x2 + ... + bn−1 · xn−1, design an algorithm
to that outputs A(x) · B(x).

We have to obtain the polynomial C (x) = A(x) · B(x)

C (x) may be written as:
C (x) = c0 + c1 · x + c2 · x2 + ... + c2n−2 · x2n−2

What is ci in terms of coefficients of A and B?

ci = ai · b0 + ai−1 · b1 + ... + a0 · bi
The vector (c0, ..., c2n−2) is called the convolution of vectors
(a0, ..., an−1) and (b0, ..., bn−1).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Algorithm

SimpleMultiply((a0, ..., an−1), (b0, ..., bn−1))
- For i = 0 to 2n − 2

- For j = 0 to i
- ci ← ci + aj · bi−j

- return((c0, c1, ..., c2n−2))

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Algorithm

SimpleMultiply((a0, ..., an−1), (b0, ..., bn−1))
- For i = 0 to 2n − 2

- For j = 0 to i
- ci ← ci + aj · bi−j

- return((c0, c1, ..., c2n−2))

What is the running time of the above algorithm? O(n2)

Is there another way to compute the polynomial C (x)?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Another way to compute the polynomial C (x):

Compute A(s1),A(s2), ...,A(s2n).
Compute B(s1),B(s2), ...,B(s2n).
Compute:

C(s1) = A(s1) · B(s1)
C(s2) = A(s2) · B(s2)
...
C(s2n) = A(s2n) · B(s2n)

Interpolate to obtain the polynomial C (x).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Another way to compute the polynomial C (x):

Compute A(s1),A(s2), ...,A(s2n).
Compute B(s1),B(s2), ...,B(s2n).
Compute:

C(s1) = A(s1) · B(s1)
C(s2) = A(s2) · B(s2)
...
C(s2n) = A(s2n) · B(s2n)

Interpolate to obtain the polynomial C (x).

How fast can you compute A(s) given value of s?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Another way to compute the polynomial C (x):

Compute A(s1),A(s2), ...,A(s2n).
Compute B(s1),B(s2), ...,B(s2n).
Compute:

C(s1) = A(s1) · B(s1)
C(s2) = A(s2) · B(s2)
...
C(s2n) = A(s2n) · B(s2n)

Interpolate to obtain the polynomial C (x).

How fast can you compute A(s) given value of s?

O(n) arithmetic operations using Horner’s rule.
A(s) = a0 + s · (a1 + s · (a2 + ... + s · (an−1) ...))

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Polynomial interpolation: We have C (s1), ...,C (s2n) and we
need to compute (c0, ..., c2n−2).

1 s1 (s1)2 . . . (s1)2n−1

1 s2 (s2)2 . . . (s2)2n−1

1 s3 (s3)2 . . . (s3)2n−1

...
...

...
...

...
1 s2n (s2n)2 . . . (s2n)2n−1

·


c0
c1
c2
...

c2n−1

 =


C (s1)
C (s2)
C (s3)

...
C (s2n)


Is the above square matrix invertible?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Polynomial interpolation: We have C (s1), ...,C (s2n) and we
need to compute (c0, ..., c2n−2).

1 s1 (s1)2 . . . (s1)2n−1

1 s2 (s2)2 . . . (s2)2n−1

1 s3 (s3)2 . . . (s3)2n−1

...
...

...
...

...
1 s2n (s2n)2 . . . (s2n)2n−1

·


c0
c1
c2
...

c2n−1

 =


C (s1)
C (s2)
C (s3)

...
C (s2n)


Is the above square matrix invertible?

Fact: A square matrix is invertible iff its determinant is
non-zero.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Polynomial interpolation: We have C (s1), ...,C (s2n) and we
need to compute (c0, ..., c2n−2).

1 s1 (s1)2 . . . (s1)2n−1

1 s2 (s2)2 . . . (s2)2n−1

1 s3 (s3)2 . . . (s3)2n−1

...
...

...
...

...
1 s2n (s2n)2 . . . (s2n)2n−1

·


c0
c1
c2
...

c2n−1

 =


C (s1)
C (s2)
C (s3)

...
C (s2n)


Is the above square matrix invertible?

Fact: A square matrix is invertible iff its determinant is
non-zero.

The square matrix above has a special name: Vandermonde
matrix.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Fact: A square matrix is invertible iff its determinant is
non-zero.

The square matrix above has a special name: Vandermonde
matrix.

Claim 1: For any Vandermonde matrix V shown below,

V =


1 s1 (s1)2 . . . (s1)2n−1

1 s2 (s2)2 . . . (s2)2n−1

1 s3 (s3)2 . . . (s3)2n−1

...
...

...
...

...
1 s2n (s2n)2 . . . (s2n)2n−1


Det(V ) =

∏
1≤j<i≤2n(si − sj).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Fact: A square matrix is invertible iff its determinant is
non-zero.

The square matrix above has a special name: Vandermonde
matrix.

Claim 1: For any Vandermonde matrix V shown below,

V =


1 s1 (s1)2 . . . (s1)2n−1

1 s2 (s2)2 . . . (s2)2n−1

1 s3 (s3)2 . . . (s3)2n−1

...
...

...
...

...
1 s2n (s2n)2 . . . (s2n)2n−1


Det(V ) =

∏
1≤j<i≤2n(si − sj).

So, as long as we use distict values of s1, ..., s2n, we will be
able to do polynomial interpolation.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Example of polynomial evaluation:

A(x) = 3 + 4x + 6x2 + 2x3 + x4 + 10x5 + 2x6 + x7

A(x) = (3 + 6x2 + x4 + 2x6) + x · (4 + 2x2 + 10x4 + x6)
Let A0(x) = 3 + 6x2 + x4 + 2x6

Let A1(x) = 4 + 2x2 + 10x4 + x6

How do we compute A(1)?

A0(1) = 12, A1(1) = 17.
So, A(1) = A0(1) + 1 · A1(1) = 12 + 17 = 29.

Now, suppose we want to compute A(−1).

A(−1) = A0(−1) + (−1) · A1(−1)

= A0(1) + (−1) · A1(1)

= 12− 17 = −5

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Example of polynomial evaluation:

A(x) = 3 + 4x + 6x2 + 2x3 + x4 + 10x5 + 2x6 + x7

A(x) = (3 + 6x2 + x4 + 2x6) + x · (4 + 2x2 + 10x4 + x6)
Let A0(x) = 3 + 6x2 + x4 + 2x6

Let A1(x) = 4 + 2x2 + 10x4 + x6

How do we compute A(1)?

A0(1) = 12, A1(1) = 17.
So, A(1) = A0(1) + 1 · A1(1) = 12 + 17 = 29.

Now, suppose we want to compute A(−1).

A(−1) = A0(−1) + (−1) · A1(−1)

= A0(1) + (−1) · A1(1)

= 12− 17 = −5

If we want to compute A on −1, 1,−2, 2,−3, 3,−4, 4, then we
only need to compute A0 and A1 on 1, 2, 3, 4.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Example of polynomial evaluation:

A(x) = 3 + 4x + 6x2 + 2x3 + x4 + 10x5 + 2x6 + x7

A(x) = (3 + 6x2 + x4 + 2x6) + x · (4 + 2x2 + 10x4 + x6)
Let A0(x) = 3 + 6x2 + x4 + 2x6

Let A1(x) = 4 + 2x2 + 10x4 + x6

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Example of polynomial evaluation:

A(x) = 3 + 4x + 6x2 + 2x3 + x4 + 10x5 + 2x6 + x7

A(x) = (3 + 6x2 + x4 + 2x6) + x · (4 + 2x2 + 10x4 + x6)
Let A0(x) = 3 + 6x2 + x4 + 2x6

Let A1(x) = 4 + 2x2 + 10x4 + x6

Let A00(x) = 3 + x4, A01(x) = 6 + 2x4

Let A10(x) = 4 + 10x4, A11(x) = 2 + x4

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Can we choose s1, ..., s2n in a more clever manner so that
evaluating the polynomials A and B on these points cost fewer
operations?
We will use complex roots of unity!

We will use 2n roots of the equation

x2n − 1 = 0

s1 = e1·
2πi
2n

s2 = e2·
2πi
2n

...
sj = e j·

2πi
2n

...

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Let w be one of the 2n roots of unity
A(w) = (a0 + a2w

2 + a4w
4 + ...) + w · (a1 + a3w

2 + a5w
4 + ...)

A(w) = A0(w2) + w · A1(w2)
If we have A0(w2) and A1(w2), then computing A(w) takes a
constant number of operations.
Suppose T (n) denotes the worst case time to compute a
polynomial at all 2n roots of unity.
Using the above equation, we can say that:

T (n) = 2T (n/2) + O(n)

Since w2 is one of the nth roots of unity.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Claim 2: Let w = e
2πi
2n . Let V be the Vandermonde matrix w.r.t.

the 2n roots of unity. That is,

V =


1 1 1 1 1
1 (w1)1 (w1)2 . . . (w1)2n−1

1 (w2)1 (w2)2 . . . (w2)2n−1

...
...

...
...

...
1 (w2n−1)1 (w2n−1)2 . . . (w2n−1)2n−1


Then [V−1]ij = w−ij

2n . That is,

V−1 =
1

2n
·


1 1 1 1 1
1 (w−1)1 (w−1)2 . . . (w−1)2n−1

1 (w−2)1 (w−2)2 . . . (w−2)2n−1

...
...

...
...

...

1 (w−(2n−1))1 (w−(2n−1))2 . . . (w−(2n−1))2n−1


Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

We have
1

V−1 =
1

2n
·


1 1 1 1 1
1 (w−1)1 (w−1)2 . . . (w−1)2n−1

1 (w−2)1 (w−2)2 . . . (w−2)2n−1

...
...

...
...

...
1 (w−(2n−1))1 (w−(2n−1))2 . . . (w−(2n−1))2n−1

 ,

2

V ·


c0
c1
...

c2n−1

 =


C (1)
C (w)

...
C (w2n−1)


How do we compute ci ’s?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Divide and Conquer
Fast Fourier Transform

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


