COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Divide and Conquer

Divide and Conquer

Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{\text {th }}$ smallest number in the array. Assume that A contains distinct numbers.

Divide and Conquer

Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{\text {th }}$ smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and A_{R} (all numbers $>p$)
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$

Divide and Conquer
 Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{t h}$ smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and A_{R} (all numbers $>p$)
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of this algorithm if the pivot is picked arbitrarily?

Divide and Conquer
 Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{t h}$ smallest number in the array.
Assume that A contains distinct numbers.

Algorithm

```
Kth-smallest-incomplete( }A,k\mathrm{ )
```

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and $A_{R}($ all numbers $>p)$
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then

```
return(Kth-smallest-incomplete( }\mp@subsup{A}{R}{},k-|\mp@subsup{A}{L}{}|-1)
```

- What is the running time of this algorithm if the pivot is picked arbitrarily? $O\left(n^{2}\right)$

Divide and Conquer

Median finding

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and $A_{R}($ all numbers $>p)$
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

40	13	70	62	30	
19	64	67	24	94	
49	83	77	3	78	
49					
50	4	46	49	6	
85	25	29	11	60	

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort Individual groups.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements
- Sort Individual groups
- Consider the median of the medians:
- Here it is 46 .
- Use this as the pivot element.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70			- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.												
					19	24	64	67	94															
					3	49	77	78	83															
					4	6	46	49	50															
					11																			

- How many elements in A are larger than p ?

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70		- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.													
					19	24	64	67	94															
					-	49	77	78	83															
					4	6	46	49	50															
					11	25	29	60	85															

- How many elements in A are larger than p ?
- Claim 1: There are at least $(3 n / 10-6)$ numbers in A that are larger than p.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70			- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46 . - Use this as the pivot element p.												
					19	24	64	67	94															
					3	49	77	78	83															
					4	6	46	49	50															
					11	25	29	60	85															

- How many elements in A are larger than p ? at least $(3 n / 10-6)$
- How many elements in A are smaller than p ?
- Claim 2: There are at least $(3 n / 10-6)$ numbers in A that are smaller than p.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

	13	70		30	19	64	67	24	94	47	83	77						49			25	29	1	
13 30 40 62 70 19 24 64 67 94 3 49 77 78 83 4 6 46 49 50 11 25 29 60 85 - Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.																								

- How many elements in A are larger than p ? at least ($3 n / 10-6$)
- How many elements in A are smaller than p ? at least $(3 n / 10-6)$

Divide and Conquer

Median finding

Algorithm

Find-Kth-smallest (A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow$ Find-Kth-smallest $\left(B,\left\lfloor\frac{|B|}{2}\right\rfloor\right)$
- Partition the array A into A_{L} and A_{R} using p as the pivot
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of the above algorithm?

Divide and Conquer

Median finding

Algorithm

Find-Kth-smallest (A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow$ Find-Kth-smallest $\left(B,\left\lfloor\frac{|B|}{2}\right\rfloor\right)$
- Partition the array A into A_{L} and A_{R} using p as the pivot
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return $\left(\right.$ Find-Kth-smallest $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of the above algorithm?
- $T(n) \leq T(\lceil n / 5\rceil)+T(7 n / 10+6)+O(n) ; T(1)=O(1)$
- What is $T(n)$?

Divide and Conquer

Median finding

Algorithm

Find-Kth-smallest (A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow$ Find-Kth-smallest $\left(B,\left\lfloor\frac{|B|}{2}\right\rfloor\right)$
- Partition the array A into A_{L} and A_{R} using p as the pivot
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return $\left(\right.$ Find-Kth-smallest $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of the above algorithm?
- $T(n) \leq T(\lceil n / 5\rceil)+T(7 n / 10+6)+O(n) ; T(1)=O(1)$
- What is $T(n)$? $O(n)$

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

| 40 | 13 | 70 | 62 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | 64 | 67 | 24 | 94 |
| 49 | 83 | 77 | 3 | 78 |
| 50 | 4 | 46 | 49 | 6 |
| 50 | | | | |
| 85 | 25 | 29 | 11 | 60 |
| 8 | | | | |

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70	
19	24	64	67	94	• Consider groups of 5 elements. 3 49 77 78 83 4 6 46 49 50 11 25 29 60 85

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
40	13	30	19	24	3	4	6	25	29	11	46	70	64	67	62	94	47	83	77	78	50	46	49	85
60																								

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.
- Partition using the pivot as 46 .

Divide and Conquer

Median finding

- Suppose we want to find the $12^{\text {th }}$ smallest element in the following array.

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.
- Partition using the pivot as 46 .

Divide and Conquer

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and
$B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

Divide and Conquer

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and $B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

- We have to obtain the polynomial $C(x)=A(x) \cdot B(x)$
- $C(x)$ may be written as:

$$
C(x)=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\ldots+c_{2 n-2} \cdot x^{2 n-2}
$$

- What is c_{i} in terms of coefficients of A and B ?

Divide and Conquer

Fast Fourier Transform

Problem

Given two polynomials:
$A(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n-1} \cdot x^{n-1}$, and $B(x)=b_{0}+b_{1} \cdot x+b_{2} \cdot x^{2}+\ldots+b_{n-1} \cdot x^{n-1}$, design an algorithm to that outputs $A(x) \cdot B(x)$.

- We have to obtain the polynomial $C(x)=A(x) \cdot B(x)$
- $C(x)$ may be written as:
$C(x)=c_{0}+c_{1} \cdot x+c_{2} \cdot x^{2}+\ldots+c_{2 n-2} \cdot x^{2 n-2}$
- What is c_{i} in terms of coefficients of A and B ?
- $c_{i}=a_{i} \cdot b_{0}+a_{i-1} \cdot b_{1}+\ldots+a_{0} \cdot b_{i}$
- The vector $\left(c_{0}, \ldots, c_{2 n-2}\right)$ is called the convolution of vectors $\left(a_{0}, \ldots, a_{n-1}\right)$ and $\left(b_{0}, \ldots, b_{n-1}\right)$.

Divide and Conquer

Algorithm

$$
\begin{aligned}
& \text { SimpleMultiply }\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right) \\
& \quad \text { - For } i=0 \text { to } 2 n-2 \\
& \quad-\text { For } j=0 \text { to } i \\
& \quad-c_{i} \leftarrow c_{i}+a_{j} \cdot b_{i-j} \\
& \text { - return }\left(\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)\right)
\end{aligned}
$$

- What is the running time of the above algorithm?

Divide and Conquer

Algorithm

$$
\begin{aligned}
& \text { SimpleMultiply }\left(\left(a_{0}, \ldots, a_{n-1}\right),\left(b_{0}, \ldots, b_{n-1}\right)\right) \\
& \text { - For } i=0 \text { to } 2 n-2 \\
& \quad \text { - For } j=0 \text { to } i \\
& \quad-c_{i} \leftarrow c_{i}+a_{j} \cdot b_{i-j} \\
& \text { - return }\left(\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)\right)
\end{aligned}
$$

- What is the running time of the above algorithm? $O\left(n^{2}\right)$
- Is there another way to compute the polynomial $C(x)$?

Divide and Conquer

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
$-$
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.

Divide and Conquer

Fast Fourier Transform

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
- :
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.
- How fast can you compute $A(s)$ given value of s ?

Divide and Conquer

Fast Fourier Transform

- Another way to compute the polynomial $C(x)$:
- Compute $A\left(s_{1}\right), A\left(s_{2}\right), \ldots, A\left(s_{2 n}\right)$.
- Compute $B\left(s_{1}\right), B\left(s_{2}\right), \ldots, B\left(s_{2 n}\right)$.
- Compute:
- $C\left(s_{1}\right)=A\left(s_{1}\right) \cdot B\left(s_{1}\right)$
- $C\left(s_{2}\right)=A\left(s_{2}\right) \cdot B\left(s_{2}\right)$
- :
- $C\left(s_{2 n}\right)=A\left(s_{2 n}\right) \cdot B\left(s_{2 n}\right)$
- Interpolate to obtain the polynomial $C(x)$.
- How fast can you compute $A(s)$ given value of s ?
- $O(n)$ arithmetic operations using Horner's rule.
- $A(s)=a_{0}+s \cdot\left(a_{1}+s \cdot\left(a_{2}+\ldots+s \cdot\left(a_{n-1}\right) \ldots\right)\right)$

Divide and Conquer
 Fast Fourier Transform

Divide and Conquer

Fast Fourier Transform

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?

Divide and Conquer

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?
- Fact: A square matrix is invertible iff its determinant is non-zero.

Divide and Conquer

Fast Fourier Transform

- Polynomial interpolation: We have $C\left(s_{1}\right), \ldots, C\left(s_{2 n}\right)$ and we need to compute $\left(c_{0}, \ldots, c_{2 n-2}\right)$.

$$
\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
C\left(s_{1}\right) \\
C\left(s_{2}\right) \\
C\left(s_{3}\right) \\
\vdots \\
C\left(s_{2 n}\right)
\end{array}\right)
$$

- Is the above square matrix invertible?
- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.

Divide and Conquer

- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.
- Claim 1: For any Vandermonde matrix V shown below,

$$
V=\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right)
$$

$\operatorname{Det}(V)=\prod_{1 \leq j<i \leq 2 n}\left(s_{i}-s_{j}\right)$.

Divide and Conquer

Fast Fourier Transform

- Fact: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: Vandermonde matrix.
- Claim 1: For any Vandermonde matrix V shown below,

$$
V=\left(\begin{array}{ccccc}
1 & s_{1} & \left(s_{1}\right)^{2} & \ldots & \left(s_{1}\right)^{2 n-1} \\
1 & s_{2} & \left(s_{2}\right)^{2} & \ldots & \left(s_{2}\right)^{2 n-1} \\
1 & s_{3} & \left(s_{3}\right)^{2} & \ldots & \left(s_{3}\right)^{2 n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & s_{2 n} & \left(s_{2 n}\right)^{2} & \ldots & \left(s_{2 n}\right)^{2 n-1}
\end{array}\right)
$$

$\operatorname{Det}(V)=\prod_{1 \leq j<i \leq 2 n}\left(s_{i}-s_{j}\right)$.

- So, as long as we use distict values of $s_{1}, \ldots, s_{2 n}$, we will be able to do polynomial interpolation.

End

