COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

э

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Kth-smallest-incomplete(A_L, k))
- If $(|A_L| < k 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

Problem

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then return (p)

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If $(|A_L| < k - 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

• What is the running time of this algorithm if the pivot is picked arbitrarily?

Problem

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then return (p)

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If $(|A_L| < k - 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

• What is the running time of this algorithm if the pivot is picked arbitrarily? $O(n^2)$

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then $\mathsf{return}(p)$

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If
$$(|A_L| < k - 1)$$
, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• Consider groups of 5 elements.

• 3 >

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• Consider groups of 5 elements.

- A - B - M

• Sort Individual groups.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- Consider groups of 5 elements
- Sort Individual groups
- Consider the median of the medians: • Here it is 46.

- ₹ 🖹 🕨

• Use this as the pivot element.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• How many elements in A are larger than p?

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• How many elements in A are larger than p?

• Claim 1: There are at least (3n/10 - 6) numbers in A that are larger than p.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- How many elements in A are larger than p? at least (3n/10 6)
- How many elements in A are smaller than p?
 - Claim 2: There are at least (3n/10 6) numbers in A that are smaller than p.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

How many elements in A are larger than p? at least (3n/10-6)
How many elements in A are smaller than p? at least (3n/10-6)

Algorithm

Find-Kth-smallest(A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow \texttt{Find-Kth-smallest}(B, \lfloor \frac{|B|}{2} \rfloor)$
- Partition the array A into A_L and A_R using p as the pivot
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Find-Kth-smallest(A_L, k))
- If $(|A_L| < k 1)$, then return(Find-Kth-smallest($A_R, k - |A_L| - 1$))
- What is the running time of the above algorithm?

Algorithm

Find-Kth-smallest(A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow \texttt{Find-Kth-smallest}(B, \lfloor \frac{|B|}{2} \rfloor)$
- Partition the array A into A_L and A_R using p as the pivot
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Find-Kth-smallest(A_L, k))
- If $(|A_L| < k 1)$, then return(Find-Kth-smallest($A_R, k - |A_L| - 1$))
- What is the running time of the above algorithm?
 - $T(n) \leq T(\lceil n/5 \rceil) + T(7n/10+6) + O(n); T(1) = O(1)$
 - What is T(n)?

Algorithm

Find-Kth-smallest(A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow \texttt{Find-Kth-smallest}(B, \lfloor \frac{|B|}{2} \rfloor)$
- Partition the array A into A_L and A_R using p as the pivot
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Find-Kth-smallest(A_L, k))
- If $(|A_L| < k 1)$, then return(Find-Kth-smallest($A_R, k - |A_L| - 1$))
- What is the running time of the above algorithm?
 - $T(n) \leq T(\lceil n/5 \rceil) + T(7n/10+6) + O(n); T(1) = O(1)$
 - What is T(n)? O(n)

• Suppose we want to find the 12th smallest element in the following array.

34.16

• Suppose we want to find the 12th smallest element in the following array.

40	13	70	62	30
19	64	67	24	94
49	83	77	3	78
50	4	46	49	6
85	25	29	11	60

• Consider groups of 5 elements.

ヨート

• Suppose we want to find the 12th smallest element in the following array.

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort individual groups

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Suppose we want to find the 12th smallest element in the following array.

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.

< ≣ > <

• Suppose we want to find the 12th smallest element in the following array.

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

• 3 >

• Suppose we want to find the 12th smallest element in the following array.

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

Image: A Image: A

• Suppose we want to find the 12th smallest element in the following array.

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

直 ト イヨ ト イヨ ト

• Suppose we want to find the 12th smallest element in the following array.

- · Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

同 ト イ ヨ ト イ ヨ ト

• Partition using the pivot as 46.

• Suppose we want to find the 12th smallest element in the following array.

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

- ∢ ≣ ▶

• Partition using the pivot as 46.

Given two polynomials: $A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{n-1} \cdot x^{n-1}, \text{ and}$ $B(x) = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \dots + b_{n-1} \cdot x^{n-1}, \text{ design an algorithm}$ to that outputs $A(x) \cdot B(x)$.

Given two polynomials: $A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{n-1} \cdot x^{n-1}, \text{ and}$ $B(x) = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \dots + b_{n-1} \cdot x^{n-1}, \text{ design an algorithm}$ to that outputs $A(x) \cdot B(x)$.

- We have to obtain the polynomial $C(x) = A(x) \cdot B(x)$
- C(x) may be written as: $C(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + ... + c_{2n-2} \cdot x^{2n-2}$
- What is c_i in terms of coefficients of A and B?

Given two polynomials:

 $\begin{aligned} A(x) &= a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_{n-1} \cdot x^{n-1}, \text{ and} \\ B(x) &= b_0 + b_1 \cdot x + b_2 \cdot x^2 + \ldots + b_{n-1} \cdot x^{n-1}, \text{ design an algorithm} \\ \text{to that outputs } A(x) \cdot B(x). \end{aligned}$

- We have to obtain the polynomial $C(x) = A(x) \cdot B(x)$
- C(x) may be written as: $C(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + ... + c_{2n-2} \cdot x^{2n-2}$
- What is c_i in terms of coefficients of A and B?

•
$$c_i = a_i \cdot b_0 + a_{i-1} \cdot b_1 + \ldots + a_0 \cdot b_i$$

• The vector $(c_0, ..., c_{2n-2})$ is called the *convolution* of vectors $(a_0, ..., a_{n-1})$ and $(b_0, ..., b_{n-1})$.

伺 ト イ ヨ ト イ ヨ ト

Algorithm

SimpleMultiply(
$$(a_0, ..., a_{n-1}), (b_0, ..., b_{n-1})$$
)
- For $i = 0$ to $2n - 2$
- For $j = 0$ to i
- $c_i \leftarrow c_i + a_j \cdot b_{i-j}$
- return($(c_0, c_1, ..., c_{2n-2})$)

• What is the running time of the above algorithm?

< ≣ > <

Algorithm

SimpleMultiply($(a_0, ..., a_{n-1}), (b_0, ..., b_{n-1})$)

- For
$$i = 0$$
 to $2n - 2$

- For
$$j = 0$$
 to i

$$-c_i \leftarrow c_i + a_j \cdot b_{i-j}$$

- return((
$$c_0, c_1, ..., c_{2n-2}$$
))

- What is the running time of the above algorithm? $O(n^2)$
- Is there another way to compute the polynomial C(x)?

- Another way to compute the polynomial C(x):
 - Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
 - Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
 - Compute:

• :
•
$$C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n})$$

• Interpolate to obtain the polynomial C(x).

.

- Another way to compute the polynomial C(x):
 - Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
 - Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
 - Compute:
 - $C(s_1) = A(s_1) \cdot B(s_1)$
 - $C(s_2) = A(s_2) \cdot B(s_2)$
 - :
 - $C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n})$
 - Interpolate to obtain the polynomial C(x).
- How fast can you compute A(s) given value of s?

- Another way to compute the polynomial C(x):
 - Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
 - Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
 - Compute:

•
$$C(s_1) = A(s_1) \cdot B(s_1)$$

•
$$C(s_2) = A(s_2) \cdot B(s_2)$$

- :
- $C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n})$
- Interpolate to obtain the polynomial C(x).
- How fast can you compute A(s) given value of s?
 - O(n) arithmetic operations using Horner's rule.
 - $A(s) = a_0 + s \cdot (a_1 + s \cdot (a_2 + ... + s \cdot (a_{n-1}) ...))$

• Polynomial interpolation: We have $C(s_1), ..., C(s_{2n})$ and we need to compute $(c_0, ..., c_{2n-2})$.

$$\begin{pmatrix} 1 & s_1 & (s_1)^2 & \dots & (s_1)^{2n-1} \\ 1 & s_2 & (s_2)^2 & \dots & (s_2)^{2n-1} \\ 1 & s_3 & (s_3)^2 & \dots & (s_3)^{2n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_{2n} & (s_{2n})^2 & \dots & (s_{2n})^{2n-1} \end{pmatrix} . \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{2n-1} \end{pmatrix} = \begin{pmatrix} C(s_1) \\ C(s_2) \\ C(s_3) \\ \vdots \\ C(s_{2n}) \end{pmatrix}$$

• Is the above square matrix invertible?

• Polynomial interpolation: We have $C(s_1), ..., C(s_{2n})$ and we need to compute $(c_0, ..., c_{2n-2})$.

$$\begin{pmatrix} 1 & s_1 & (s_1)^2 & \dots & (s_1)^{2n-1} \\ 1 & s_2 & (s_2)^2 & \dots & (s_2)^{2n-1} \\ 1 & s_3 & (s_3)^2 & \dots & (s_3)^{2n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_{2n} & (s_{2n})^2 & \dots & (s_{2n})^{2n-1} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{2n-1} \end{pmatrix} = \begin{pmatrix} C(s_1) \\ C(s_2) \\ C(s_3) \\ \vdots \\ C(s_{2n}) \end{pmatrix}$$

- Is the above square matrix invertible?
- Fact: A square matrix is invertible iff its determinant is non-zero.

Divide and Conquer Fast Fourier Transform

• Polynomial interpolation: We have $C(s_1), ..., C(s_{2n})$ and we need to compute $(c_0, ..., c_{2n-2})$.

$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	51 52	$(s_1)^2 (s_2)^2$		$(s_1)^{2n-1}$ $(s_2)^{2n-1}$	C ₀ C ₁		$\begin{pmatrix} C(s_1) \\ C(s_2) \end{pmatrix}$
1	<i>s</i> ₃	$(s_3)^2$		$(s_3)^{2n-1}$	c_2	=	$C(s_3)$
	÷	:	÷	: : :	÷		
$\setminus 1$	s 2n	$(s_{2n})^2$	•••	$(s_{2n})^{2n-1}$)	<i>c</i> _{2<i>n</i>-1}	/	$\langle C(s_{2n}) \rangle$

- Is the above square matrix invertible?
- <u>Fact</u>: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: *Vandermonde* matrix.

- <u>Fact</u>: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: *Vandermonde* matrix.
- <u>Claim 1</u>: For any Vandermonde matrix V shown below,

$$V = \begin{pmatrix} 1 & s_1 & (s_1)^2 & \dots & (s_1)^{2n-1} \\ 1 & s_2 & (s_2)^2 & \dots & (s_2)^{2n-1} \\ 1 & s_3 & (s_3)^2 & \dots & (s_3)^{2n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_{2n} & (s_{2n})^2 & \dots & (s_{2n})^{2n-1} \end{pmatrix}$$

 $Det(V) = \prod_{1 \le j < i \le 2n} (s_i - s_j).$

- <u>Fact</u>: A square matrix is invertible iff its determinant is non-zero.
- The square matrix above has a special name: *Vandermonde* matrix.
- <u>Claim 1</u>: For any Vandermonde matrix V shown below,

$$V = \begin{pmatrix} 1 & s_1 & (s_1)^2 & \dots & (s_1)^{2n-1} \\ 1 & s_2 & (s_2)^2 & \dots & (s_2)^{2n-1} \\ 1 & s_3 & (s_3)^2 & \dots & (s_3)^{2n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_{2n} & (s_{2n})^2 & \dots & (s_{2n})^{2n-1} \end{pmatrix}$$

 $Det(V) = \prod_{1 \le j < i \le 2n} (s_i - s_j).$

• So, as long as we use distict values of $s_1, ..., s_{2n}$, we will be able to do polynomial interpolation.

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590