COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

э

Problem

- Brute-force algorithm: Consider all pairs and pick closest.
 - Running time:

- Brute-force algorithm: Consider all pairs and pick closest.
 - Running time: $O(n^2)$

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R.

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R.
 - Pick the closest pair among $(i_L, j_L), (i_R, j_R)$, and (p, q).

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R.
 - Pick the closest pair among $(i_L, j_L), (i_R, j_R)$, and (p, q).
- What is the running time of the above algorithm?

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R.
 - Pick the closest pair among $(i_L, j_L), (i_R, j_R)$, and (p, q).
- Let $x = x^*$ be a line along the Y-axis dividing the points into P_L and P_R .
- Let d be the distance between the closest pair of points in P_L and P_R .
- <u>Claim 1</u>: For any pair of points (p, q) such that x(p) < x^{*} − d and x(q) ≥ x^{*}, the distance between p and q is ≥ d.
- <u>Claim 2</u>: For any pair of points (p, q) such that $x(p) \le x^*$ and $x(q) > x^* + d$, the distance between p and q is $\ge d$.

| 4 同 6 4 回 6 4 回 6

- Divide and Conquer: (Divide based on X-axis)
 - Consider the *left-half* points P_L and *right-half* points P_R .
 - Recursively find the closest pair of points (i_l, j_L) in P_L , and (i_R, j_R) in P_R .
 - Consider all pair of points (*p*, *q*) such that *p* belongs to *P*_L and *q* belongs to *P*_R.
 - Pick the closest pair among $(i_L, j_L), (i_R, j_R)$, and (p, q).
- Let $x = x^*$ be a line along the Y-axis dividing the points into P_L and P_R .
- Let d be the distance between the closest pair of points in P_L and P_R .
- Claim 1: For any pair of points (p, q) such that x(p) < x^{*} − d and x(q) ≥ x^{*}, the distance between p and q is ≥ d.
- <u>Claim 2</u>: For any pair of points (p, q) such that $x(p) \le x^*$ and $x(q) > x^* + d$, the distance between p and q is $\ge d$.
- This means that for pairs of points across the line $x = x^*$, we can throw any point in P_L that has small X-coordinate and any point in P_R that has large X-coordinate.
- Do these claims help in improving the running time?

• How many points are there in each "box"?

<u>Claim 3</u>: Let P be all the points that have X-coordinate between (x* - d) and (x* + d). Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d.
- Let $y(p) \le y(q)$. The case y(q) < y(p) will be symmetric.

<u>Claim 3</u>: Let P be all the points that have X-coordinate between (x* - d) and (x* + d). Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d.
- Let $y(p) \le y(q)$. The case y(q) < y(p) will be symmetric.
- *q* can only belong to one of the shaded boxes.

<u>Claim 3</u>: Let P be all the points that have X-coordinate between (x* - d) and (x* + d). Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d.
- Let $y(p) \le y(q)$. The case y(q) < y(p) will be symmetric.
- *q* can only belong to one of the shaded boxes.

Algorithm

- ClosestPair(P)
 - ... //Base cases
 - Sort the points in increasing order of X-coordinates and pick the median point (x^*, y)
 - Partition P into P_L (all point p with $x(p) < x^*$) and P_R (all points with $x(p) \ge x^*$)
 - Let $(p_L, q_L) \leftarrow \texttt{ClosestPair}(P_L)$
 - Let $(p_R, q_R) \leftarrow \texttt{ClosestPair}(P_R)$
 - Let (p, q) be the pair (among (p_L, q_L) and (p_R, q_R)) with the smaller distance and let d be this distance
 - Let S be the sorted list of points with X-coordinate between $(x^* d)$ and $(x^* + d)$
 - For i = 1 to |S|
 - For j = 1 to 11
 - If distance(S[i], S[i+j]) < d - $(p, q) \leftarrow (S[i], S[i+j])$
 - $d \leftarrow distance(S[i], S[i+j])$
 - Output(p,q)
 - What is the running time of the above algorithm?

Algorithm

ClosestPair(P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point (x^*, y)
- Partition P into P_L (all point p with $x(p) < x^*$) and P_R (all points with $x(p) \ge x^*$)
- Let $(p_L, q_L) \leftarrow \texttt{ClosestPair}(P_L)$
- Let $(p_R, q_R) \leftarrow \texttt{ClosestPair}(P_R)$
- Let (p,q) be the pair (among (p_L,q_L) and (p_R,q_R)) with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $(x^* d)$ and $(x^* + d)$
- For i=1 to |S|
 - For j=1 to 11
 - If distance(S[i], S[i+j]) < d

$$(p,q) \leftarrow (S[i],S[i+j])$$

- $d \leftarrow distance(S[i], S[i+j])$
- Output(p, q)
- What is the running time of the above algorithm?

•
$$T(n) = 2 \cdot T(n/2) + O(n \log n); T(1) = O(1); T(2) = O(1)$$

Algorithm

ClosestPair(P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point (x^*, y)
- Partition P into P_L (all point p with $x(p) < x^*$) and P_R (all points with $x(p) \ge x^*$)
- Let $(p_L, q_L) \leftarrow \texttt{ClosestPair}(P_L)$
- Let $(p_R, q_R) \leftarrow \texttt{ClosestPair}(P_R)$
- Let (p,q) be the pair (among (p_L,q_L) and $(p_R,q_R))$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $(x^{\ast}-d)$ and $(x^{\ast}+d)$

- For
$$i = 1$$
 to $|S|$

- For
$$j = 1$$
 to 11

- If
$$distance(S[i], S[i+j]) < d$$

$$(p,q) \leftarrow (S[i],S[i+j])$$

-
$$d \leftarrow distance(S[i], S[i+j])$$

Output(p, q)

• What is the running time of the above algorithm?

•
$$T(n) = 2 \cdot T(n/2) + O(n \log n); T(1) = O(1); T(2) = O(1)$$

•
$$T(n) = O(n \log^2 n)$$

同 ト イ ヨ ト イ ヨ ト

Algorithm

ClosestPair(P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point (x^*, y)
- Partition P into P_L (all point p with $x(p) < x^*$) and P_R (all points with $x(p) \ge x^*$)
- Let $(p_L, q_L) \leftarrow \texttt{ClosestPair}(P_L)$
- Let $(p_R, q_R) \leftarrow \texttt{ClosestPair}(P_R)$
- Let (p,q) be the pair (among (p_L,q_L) and $(p_R,q_R))$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $(x^* d)$ and $(x^* + d)$

- For
$$i = 1$$
 to $|S|$

- For
$$j = 1$$
 to 11

If
$$distance(S[i], S[i+j]) < d$$

$$-(p,q) \leftarrow (S[i],S[i+j])$$

-
$$d \leftarrow distance(S[i], S[i+j])$$

- Output(p, q)

- What is the running time of the above algorithm? $O(n \log^2 n)$
- Can we take the sorting out of the recursive program?
- What is the running time we get in doing so?

Algorithm

ClosestPair(P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point (x^*, y)
- Partition P into P_L (all point p with $x(p) < x^*$) and P_R (all points with $x(p) \ge x^*$)
- Let $(p_L, q_L) \leftarrow \texttt{ClosestPair}(P_L)$
- Let $(p_R, q_R) \leftarrow \texttt{ClosestPair}(P_R)$
- Let (p,q) be the pair (among (p_L,q_L) and $(p_R,q_R))$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $(x^* d)$ and $(x^* + d)$

- For
$$i = 1$$
 to $|S|$

- For
$$j = 1$$
 to 11

If
$$distance(S[i], S[i+j]) < d$$

$$-(p,q) \leftarrow (S[i],S[i+j])$$

-
$$d \leftarrow distance(S[i], S[i+j])$$

- Output(p,q)

- What is the running time of the above algorithm? $O(n \log^2 n)$
- Can we take the sorting out of the recursive program?
- What is the running time we get in doing so? $O(n \log n)$

・ロト ・同ト ・ヨト ・ヨト

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< E

э

- ₹ 🖬 🕨

- ∢ ⊒ →

э

• Throw away points beyond $(x^* - d)$ and $(x^* + d)$.

• Throw away points beyond $(x^* - d)$ and $(x^* + d)$.

• Consider the list of points sorted based on Y-coordinate.

- Consider the list of points sorted based on Y-coordinate.
- Check the distance of a point in the list with the next 11 elements.

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Kth-smallest-incomplete(A_L, k))
- If $(|A_L| < k 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

Problem

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then return (p)

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If $(|A_L| < k - 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

• What is the running time of this algorithm if the pivot is picked arbitrarily?

Problem

<u>Median Finding</u>: Given an array of unsorted numbers and an integer k, design an algorithm that finds the k^{th} smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then return (p)

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If $(|A_L| < k - 1)$, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

• What is the running time of this algorithm if the pivot is picked arbitrarily? $O(n^2)$

Algorithm

Kth-smallest-incomplete(A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p)

- If
$$(|A_L| = k - 1)$$
, then $\mathsf{return}(p)$

- If $(|A_L| > k - 1)$, then return(Kth-smallest-incomplete(A_L, k))

- If
$$(|A_L| < k - 1)$$
, then return(Kth-smallest-incomplete($A_R, k - |A_L| - 1$))

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• Consider groups of 5 elements.

• 3 >

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• Consider groups of 5 elements.

- A - B - M

• Sort Individual groups.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- Consider groups of 5 elements
- Sort Individual groups
- Consider the median of the medians: • Here it is 46.

- ₹ 🖬 🕨

• Use this as the pivot element.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• How many elements in A are larger than p?

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

• How many elements in A are larger than p?

• Claim 1: There are at least (3n/10 - 6) numbers in A that are larger than p.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

- How many elements in A are larger than p? at least (3n/10 6)
- How many elements in A are smaller than p?
 - Claim 2: There are at least (3n/10 6) numbers in A that are smaller than p.

- How do we pick a good pivot number?
 - Randomly: We will look at this later.
 - Deterministically:

How many elements in A are larger than p? at least (3n/10-6)
How many elements in A are smaller than p? at least (3n/10-6)

Algorithm

Find-Kth-smallest(A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow \texttt{Find-Kth-smallest}(B, \lfloor \frac{|B|}{2} \rfloor)$
- Partition the array A into A_L and A_R using p as the pivot
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Find-Kth-smallest(A_L, k))
- If $(|A_L| < k 1)$, then return(Find-Kth-smallest($A_R, k - |A_L| - 1$))
- What is the running time of the above algorithm?

Algorithm

Find-Kth-smallest(A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow \texttt{Find-Kth-smallest}(B, \lfloor \frac{|B|}{2} \rfloor)$
- Partition the array A into A_L and A_R using p as the pivot
- If $(|A_L| = k 1)$, then return(p)
- If $(|A_L| > k 1)$, then return(Find-Kth-smallest(A_L, k))
- If $(|A_L| < k 1)$, then return(Find-Kth-smallest($A_R, k - |A_L| - 1$))
- What is the running time of the above algorithm?
 - $T(n) \leq T(\lceil n/5 \rceil) + T(\lceil n/10 + 6) + O(n); T(1) = O(1)$
 - What is T(n)?

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590