COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Divide and Conquer

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Brute-force algorithm: Consider all pairs and pick closest.
- Running time:

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Brute-force algorithm: Consider all pairs and pick closest.
- Running time: $O\left(n^{2}\right)$

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i_{1}, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$, and (p, q).

Divide and Conquer

Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Design an algorithm that outputs the closest pair of points.

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$, and (p, q).
- What is the running time of the above algorithm?

Divide and Conquer

Closest pair of points on a plane

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i_{l}, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$, and (p, q).
- Let $x=x^{*}$ be a line along the Y-axis dividing the points into P_{L} and P_{R}.
- Let d be the distance between the closest pair of points in P_{L} and P_{R}.
- Claim 1: For any pair of points (p, q) such that $x(p)<x^{*}-d$ and $x(q) \geq x^{*}$, the distance between p and q is $\geq d$.
- Claim 2: For any pair of points (p, q) such that $x(p) \leq x^{*}$ and $x(q)>x^{*}+d$, the distance between p and q is $\geq d$.

Divide and Conquer

Closest pair of points on a plane

- Divide and Conquer: (Divide based on X-axis)
- Consider the left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points $\left(i_{l}, j_{L}\right)$ in P_{L}, and $\left(i_{R}, j_{R}\right)$ in P_{R}.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$, and (p, q).
- Let $x=x^{*}$ be a line along the Y-axis dividing the points into P_{L} and P_{R}.
- Let d be the distance between the closest pair of points in P_{L} and P_{R}.
- Claim 1: For any pair of points (p, q) such that $x(p)<x^{*}-d$ and $x(q) \geq x^{*}$, the distance between p and q is $\geq d$.
- Claim 2: For any pair of points (p, q) such that $x(p) \leq x^{*}$ and $x(q)>x^{*}+d$, the distance between p and q is $\geq d$.
- This means that for pairs of points across the line $x=x^{*}$, we can throw any point in P_{L} that has small X-coordinate and any point in P_{R} that has large X-coordinate.
- Do these claims help in improving the running time?

Divide and Conquer

Closest pair of points on a plane

- How many points are there in each "box"?

Divide and Conquer

Closest pair of points on a plane

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d.
- Let $y(p) \leq y(q)$. The case $y(q)<y(p)$ will be symmetric.

Divide and Conquer

Closest pair of points on a plane

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d.
- Let $y(p) \leq y(q)$. The case $y(q)<y(p)$ will be symmetric.
- q can only belong to one of the shaded boxes.

Divide and Conquer

Closest pair of points on a plane

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and the distance between p and q is at most d. Then there cannot be more than 10 points between p and q in the sorted list S.

- Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d.
- Let $y(p) \leq y(q)$. The case $y(q)<y(p)$ will be symmetric.
- q can only belong to one of the shaded boxes.

Divide and Conquer

Closest pair of points on a plane

Algorithm

ClosestPair (P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point (x^{*}, y)
- Partition P into P_{L} (all point p with $x(p)<x^{*}$) and P_{R} (all points with $x(p) \geq x^{*}$)
- Let $\left(p_{L}, q_{L}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- Let $\left(p_{R}, q_{R}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) be the pair (among $\left(p_{L}, q_{L}\right)$ and $\left.\left(p_{R}, q_{R}\right)\right)$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $\left(x^{*}-d\right)$ and ($x^{*}+d$)
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If distance $(S[i], S[i+j])<d$
$-(p, q) \leftarrow(S[i], S[i+j])$
$-d \leftarrow \operatorname{distance}(S[i], S[i+j])$
- $\operatorname{Output}(p, q)$
- What is the running time of the above algorithm?

Divide and Conquer

Closest pair of points on a plane

Algorithm

ClosestPair (P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all point p with $\left.x(p)<x^{*}\right)$ and P_{R} (all points with $x(p) \geq x^{*}$)
- Let $\left(p_{L}, q_{L}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- Let $\left(p_{R}, q_{R}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) be the pair (among $\left(p_{L}, q_{L}\right)$ and $\left.\left(p_{R}, q_{R}\right)\right)$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between ($x^{*}-d$) and ($x^{*}+d$)
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If distance $(S[i], S[i+j])<d$
$-(p, q) \leftarrow(S[i], S[i+j])$
$-d \leftarrow \operatorname{distance}(S[i], S[i+j])$
- $\operatorname{Output}(p, q)$
- What is the running time of the above algorithm?
- $T(n)=2 \cdot T(n / 2)+O(n \log n) ; T(1)=O(1) ; T(2)=O(1)$

Divide and Conquer

Closest pair of points on a plane

Algorithm

ClosestPair (P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all point p with $\left.x(p)<x^{*}\right)$ and P_{R} (all points with $x(p) \geq x^{*}$)
- Let $\left(p_{L}, q_{L}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- Let $\left(p_{R}, q_{R}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) be the pair (among $\left(p_{L}, q_{L}\right)$ and $\left.\left(p_{R}, q_{R}\right)\right)$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $\left(x^{*}-d\right)$ and ($x^{*}+d$)
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If distance $(S[i], S[i+j])<d$
$-(p, q) \leftarrow(S[i], S[i+j])$
$-d \leftarrow \operatorname{distance}(S[i], S[i+j])$
- Output (p, q)
- What is the running time of the above algorithm?
- $T(n)=2 \cdot T(n / 2)+O(n \log n) ; T(1)=O(1) ; T(2)=O(1)$
- $T(n)=O\left(n \log ^{2} n\right)$

Divide and Conquer

Closest pair of points on a plane

Algorithm

ClosestPair (P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all point p with $\left.x(p)<x^{*}\right)$ and P_{R} (all points with $x(p) \geq x^{*}$)
- Let $\left(p_{L}, q_{L}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- Let $\left(p_{R}, q_{R}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) be the pair (among $\left(p_{L}, q_{L}\right)$ and $\left.\left(p_{R}, q_{R}\right)\right)$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $\left(x^{*}-d\right)$ and ($x^{*}+d$)
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If distance $(S[i], S[i+j])<d$
$-(p, q) \leftarrow(S[i], S[i+j])$
$-d \leftarrow \operatorname{distance}(S[i], S[i+j])$
- $\operatorname{Output}(p, q)$
- What is the running time of the above algorithm? $O\left(n \log ^{2} n\right)$
- Can we take the sorting out of the recursive program?
- What is the running time we get in doing so?

Divide and Conquer

Closest pair of points on a plane

Algorithm

ClosestPair (P)

- ... //Base cases
- Sort the points in increasing order of X-coordinates and pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all point p with $\left.x(p)<x^{*}\right)$ and P_{R} (all points with $x(p) \geq x^{*}$)
- Let $\left(p_{L}, q_{L}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- Let $\left(p_{R}, q_{R}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) be the pair (among $\left(p_{L}, q_{L}\right)$ and $\left.\left(p_{R}, q_{R}\right)\right)$ with the smaller distance and let d be this distance
- Let S be the sorted list of points with X-coordinate between $\left(x^{*}-d\right)$ and ($x^{*}+d$)
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If distance $(S[i], S[i+j])<d$
$-(p, q) \leftarrow(S[i], S[i+j])$
$-d \leftarrow \operatorname{distance}(S[i], S[i+j])$
- $\operatorname{Output}(p, q)$
- What is the running time of the above algorithm? $O\left(n \log ^{2} n\right)$
- Can we take the sorting out of the recursive program?
- What is the running time we get in doing so? $O(n \log n)$

Divide and Conquer

Closest pair of points on a plane

Divide and Conquer

Closest pair of points on a plane

Divide and Conquer

 Closest pair of points on a plane

Divide and Conquer

Closest pair of points on a plane

- Throw away points beyond $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$.

Divide and Conquer

Closest pair of points on a plane

- Throw away points beyond $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$.

Divide and Conquer

Closest pair of points on a plane

- Consider the list of points sorted based on Y-coordinate.

Divide and Conquer

Closest pair of points on a plane

- Consider the list of points sorted based on Y-coordinate.
- Check the distance of a point in the list with the next 11 elements.

Divide and Conquer

Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{\text {th }}$ smallest number in the array. Assume that A contains distinct numbers.

Divide and Conquer

Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{\text {th }}$ smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and A_{R} (all numbers $>p$)
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$

Divide and Conquer
 Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{t h}$ smallest number in the array. Assume that A contains distinct numbers.

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and A_{R} (all numbers $>p$)
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of this algorithm if the pivot is picked arbitrarily?

Divide and Conquer
 Median finding

Problem

Median Finding: Given an array of unsorted numbers and an integer k, design an algorithm that finds the $k^{t h}$ smallest number in the array.
Assume that A contains distinct numbers.

Algorithm

```
Kth-smallest-incomplete( }A,k\mathrm{ )
```

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and $A_{R}($ all numbers $>p)$
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then

```
return(Kth-smallest-incomplete( }\mp@subsup{A}{R}{},k-|\mp@subsup{A}{L}{}|-1)
```

- What is the running time of this algorithm if the pivot is picked arbitrarily? $O\left(n^{2}\right)$

Divide and Conquer

Median finding

Algorithm

Kth-smallest-incomplete (A, k)

- Pick a number p as pivot
- Partition the numbers in A into A_{L} (all numbers $<p$) and $A_{R}($ all numbers $>p)$
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then return(Kth-smallest-incomplete $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Kth-smallest-incomplete $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

40	13	70	62	30	
19	64	67	24	94	
49	83	77	3	78	
49					
50	4	46	49	6	
85	25	29	11	60	

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort Individual groups.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements
- Sort Individual groups
- Consider the median of the medians:
- Here it is 46 .
- Use this as the pivot element.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70			- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.												
					19	24	64	67	94															
					3	49	77	78	83															
					4	6	46	49	50															
					11																			

- How many elements in A are larger than p ?

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70		- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.													
					19	24	64	67	94															
					-	49	77	78	83															
					4	6	46	49	50															
					11	25	29	60	85															

- How many elements in A are larger than p ?
- Claim 1: There are at least $(3 n / 10-6)$ numbers in A that are larger than p.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

40	13	70	62	30	19	64	67	24	94	47	83	77	3	78	50	4	46	49	6	85	25	29	11	60
					13	30	40	62	70			- Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46 . - Use this as the pivot element p.												
					19	24	64	67	94															
					3	49	77	78	83															
					4	6	46	49	50															
					11	25	29	60	85															

- How many elements in A are larger than p ? at least $(3 n / 10-6)$
- How many elements in A are smaller than p ?
- Claim 2: There are at least $(3 n / 10-6)$ numbers in A that are smaller than p.

Divide and Conquer

Median finding

- How do we pick a good pivot number?
- Randomly: We will look at this later.
- Deterministically:

	13	70		30	19	64	67	24	94	47	83	77						49			25	29	1	
13 30 40 62 70 19 24 64 67 94 3 49 77 78 83 4 6 46 49 50 11 25 29 60 85 - Consider groups of 5 elements - Sort Individual groups - Consider the median of the medians: - Here it is 46. - Use this as the pivot element p.																								

- How many elements in A are larger than p ? at least ($3 n / 10-6$)
- How many elements in A are smaller than p ? at least $(3 n / 10-6)$

Divide and Conquer

Median finding

Algorithm

Find-Kth-smallest (A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow$ Find-Kth-smallest $\left(B,\left\lfloor\frac{|B|}{2}\right\rfloor\right)$
- Partition the array A into A_{L} and A_{R} using p as the pivot
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of the above algorithm?

Divide and Conquer

Median finding

Algorithm

Find-Kth-smallest (A, k)

- ... //Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median number from each group
- $p \leftarrow$ Find-Kth-smallest $\left(B,\left\lfloor\frac{|B|}{2}\right\rfloor\right)$
- Partition the array A into A_{L} and A_{R} using p as the pivot
- If $\left(\left|A_{L}\right|=k-1\right)$, then return (p)
- If $\left(\left|A_{L}\right|>k-1\right)$, then
return $\left(\right.$ Find-Kth-smallest $\left.\left(A_{L}, k\right)\right)$
- If $\left(\left|A_{L}\right|<k-1\right)$, then
return(Find-Kth-smallest $\left.\left(A_{R}, k-\left|A_{L}\right|-1\right)\right)$
- What is the running time of the above algorithm?
- $T(n) \leq T(\lceil n / 5\rceil)+T(7 n / 10+6)+O(n) ; T(1)=O(1)$
- What is $T(n)$?

End

