
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Course Overview

Basic graph algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Introduction

You have already seen multiple examples of Divide and
Conquer algorithms:

Binary Search
Merge Sort
Quick Sort
Multiplying two n-bit numbers in O

(
nlog2 3

)
time.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Main Idea

Main Idea: Divide the input into smaller parts. Solve the
smaller parts and combine their solution.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Problem

Given an array of unsorted integers, output a sorted array.

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

How do we argue correctness?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

How do we argue correctness?
Proof of correctness of Divide and Conquer algorithms are usually
by induction.

Base case: This corresponds to the base cases of the algorithm.
For the MergeSort, the base case is that the algorithm correctly
sorts arrays of size 1.
Inductive step: In general, this corresponds to correctly combining
the solutions of smaller subproblems. For MergeSort, this is just
proving that the Merge routine works correctly. This may again be
done using induction and is left as an exercise.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.
T (n) ≤ 2 · T (n/2) + cn for n ≥ 2 and T (1) ≤ c is called a
recurrence relation for the running time T (n).
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.
T (n) ≤ 2 · T (n/2) + cn for n ≥ 2 and T (1) ≤ c is called a
recurrence relation for the running time T (n).
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Unrolling the recursion: Rewrite T (n/2) in terms of T (n/4) and
so on until a pattern for the running time with respect to all levels
of the recursion is observed. Then, combine these and get the
value of T (n).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Recurrence relation for Merge Sort: T (n) ≤ 2 · T (n/2) + cn for
n ≥ 2 and T (1) ≤ c.
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Unrolling the recursion: Rewrite T (n/2) in terms of T (n/4) and
so on until a pattern for the running time with respect to all levels
of the recursion is observed. Then, combine these and get the
value of T (n).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Merge Sort

Recurrence relation for Merge Sort: T (n) ≤ 2 · T (n/2) + cn for
n ≥ 2 and T (1) ≤ c.
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?
So, the running time T (n) ≤ cn · log n = O(n log n).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Solving recurrence relations

Question: Suppose there is a divide and conquer algorithm
where the recurrence relation for running time T (n) is the
following:

T (n) ≤ 2T (n/2) + cn2 for n ≥ 2, and T (1) ≤ c .

What is the solution of this recurrence relation in big-oh
notation?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Theorem

Master Theorem: Let

T (n) ≤ a · T
(n
b

)
+ c · nk and T (1) ≤ c ,

Then

T (n) =

? if a < bk

? if a = bk

? if a > bk

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Theorem

Master Theorem: Let

T (n) ≤ a · T
(n
b

)
+ c · nk and T (1) ≤ c ,

Then

T (n) =

O(nk) if a < bk

O(nk · logb n) if a = bk

O
(
nlog a/ log b

)
if a > bk

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Solution 1: Use long multiplication.

What is the running time of the algorithm that uses long
multiplication?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Solution 1: Use long multiplication.

What is the running time of the algorithm that uses long
multiplication? O(n2)

Is there a faster algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Solution 1: Algorithm using long multiplication with running
time O(n2).

Solution 2: (Assume n is a power of 2)

Write A = AL · 2n/2 + AR and B = BL · 2n/2 + BR .
So, A ·B = (AL ·BL) · 2n + (AL ·BR +AR ·BL) · 2n/2 + (AR ·BR)
Main Idea: Compute (AL · BL), (AR · BR), and
(AL + BL) · (AR + BR)− (AL · BL)− (AR · BR).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A · B.

Algorithm

Karatsuba(A,B)
- If (|A| = |B| = 1) return(A · B)
- Split A into AL and AR

- Split B into BL and BR

- P ← Karatsuba(AL,BL)

- Q ← Karatsuba(AR ,BR)

- R ← Karatsuba(AL + AR ,BL + BR)

- return(2n · P + 2n/2 · (R − P − Q) + Q)

What is the recurrence relation for the running time of the
above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B,
Design an algorithm to output A · B.

Algorithm

Karatsuba(A,B)
- If (|A| = |B| = 1) return(A · B)
- Split A into AL and AR

- Split B into BL and BR

- P ← Karatsuba(AL,BL)

- Q ← Karatsuba(AR ,BR)

- R ← Karatsuba(AL + AR ,BL + BR)

- return(2n · P + 2n/2 · (R − P − Q) + Q)

Recurrence relation: T (n) ≤ 3 · T (n/2) + cn;T (1) ≤ c .
What is the solution of this recurrence relation from the Master
Theorem?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Theorem

Master Theorem: Let

T (n) ≤ a · T
(n
b

)
+ c · nk and T (1) ≤ c ,

Then

T (n) =

O(nk) if a < bk

O(nk · logb n) if a = bk

O
(
nlog a/ log b

)
if a > bk

Recurrence relation: T (n) ≤ 3 · T (n/2) + cn; T (1) ≤ c .

What is the solution to the above recurrence relation?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Master theorem

Theorem

Master Theorem: Let

T (n) ≤ a · T
(n
b

)
+ c · nk and T (1) ≤ c ,

Then

T (n) =

O(nk) if a < bk

O(nk · logb n) if a = bk

O
(
nlog a/ log b

)
if a > bk

Recurrence relation: T (n) ≤ 3 · T (n/2) + cn; T (1) ≤ c .
What is the solution to the above recurrence relation?
T (n) ≤ O(nlog2 3)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Solving recurrence relation

Consider the recurrence relation for the running time of the
MergeSort algorithm:

T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2 ;T (2) ≤ c

Another way to solve the recurrence relation is substitution:
1 Guess the bound on T (n), and
2 Show that this bound holds using induction.

Let our guess be T (n) ≤ cn log n for all n ≥ 2. We will now prove
this by induction
Base case: T (n) ≤ cn log n when n = 2 since we are given that
T (2) ≤ c.
Inductive step: Suppose the bound holds for n = 2, ..., k − 1, we
will show that the bound also holds for n = k .

We know T (k) ≤ 2T (k/2) + ck .
So, using induction hypothesis, we get:
T (k) ≤ 2c(k/2) log(k/2) + ck = ck log k.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Brute-force algorithm: Consider all pairs and pick closest.

Running time:

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Brute-force algorithm: Consider all pairs and pick closest.

Running time: O(n2)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .
Consider all pair of points (p, q) such that p belongs to PL and q
belongs to PR .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .
Consider all pair of points (p, q) such that p belongs to PL and q
belongs to PR .
Pick the closest pair among (iL, jL), (iR , jR), and (p, q).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Problem

You are given n points on a two dimensional plane. Each point i is
defined by a pair (x(i), y(i)) of coordinates. Design an algorithm that
outputs the closest pair of points.

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .
Consider all pair of points (p, q) such that p belongs to PL and q
belongs to PR .
Pick the closest pair among (iL, jL), (iR , jR), and (p, q).

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .
Consider all pair of points (p, q) such that p belongs to PL and q
belongs to PR .
Pick the closest pair among (iL, jL), (iR , jR), and (p, q).

Let x = x∗ be a line along the Y -axis dividing the points into PL

and PR .
Let d be the distance between the closest pair of points in PL and
PR .
Claim 1: For any pair of points (p, q) such that x(p) < x∗ − d
and x(q) ≥ x∗, the distance between p and q is ≥ d .
Claim 2: For any pair of points (p, q) such that x(p) ≤ x∗ and
x(q) > x∗ + d , the distance between p and q is ≥ d .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Divide and Conquer
Closest pair of points on a plane

Divide and Conquer: (Divide based on X -axis)

Consider the left-half points PL and right-half points PR .
Recursively find the closest pair of points (il , jL) in PL, and (iR , jR)
in PR .
Consider all pair of points (p, q) such that p belongs to PL and q
belongs to PR .
Pick the closest pair among (iL, jL), (iR , jR), and (p, q).

Let x = x∗ be a line along the Y -axis dividing the points into PL

and PR .
Let d be the distance between the closest pair of points in PL and
PR .
Claim 1: For any pair of points (p, q) such that x(p) < x∗ − d
and x(q) ≥ x∗, the distance between p and q is ≥ d .
Claim 2: For any pair of points (p, q) such that x(p) ≤ x∗ and
x(q) > x∗ + d , the distance between p and q is ≥ d .
This means that for pairs of points across the line x = x∗, we can
throw any point in PL that has small X -coordinate and any point
in PR that has large X -coordinate.
Do these claims help in improving the running time?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

