COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Greedy Algorithms

э

< ∃ >

Greedy Algorithms Minimum Spanning Tree

Algorithm

Kruskal's Algorithm(G)

$$-S \leftarrow E; T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices
 - Let e be the minimum weight edge in the set S
 - If e does not create a cycle in T

-
$$T \leftarrow T \cup \{e\}$$

-
$$S \leftarrow S \setminus \{e\}$$

Algorithm

Kruskal's Algorithm(G)

$$- S \leftarrow E; \ T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices
 - //Note that G' = (V, T) contains dicsonnected components
 - Let e be the minimum weight edge in the set S
 - If e does not create a cycle in T
 - If u and v are in different components of G'

-
$$T \leftarrow T \cup \{e\}$$

$$S \leftarrow S \setminus \{e\}$$

- <u>Union-Find</u>: Used for storing partition of a set of elements. The following two operations are supported:
 - **(**) Find (v): Find the partition to which the element v belongs.
 - Onion(u, v): Merge the partition to which u belongs with the partition to which v belongs.
- Consider the following data structure.

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v):
 - *Union*(*u*, *v*):

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v): O(1)
 - Union(u, v):

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
 - Find(v): O(1)
 - *Union*(*u*, *v*):
 - <u>Claim</u>: Performing k union operations takes $O(k \log k)$ time in the worst case when starting from a full partition.
 - <u>Proof sketch</u>: For any element *u*, every time its pointer needs to be changed, the size of the partition that it belongs to at least doubles in size. This means that the pointer for *u* cannot change more than $O(\log k)$ times.

• • = • • = •

• Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)

$$-S \leftarrow E; T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices

- //Note that G' = (V, T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G'
- If $(Find(u) \neq Find(v))$
 - $T \leftarrow T \cup \{e\}$
 - Union(u, v)

-
$$S \leftarrow S \setminus \{e\}$$

• What is the running time of the above algorithm?

• Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)

$$-S \leftarrow E; T \leftarrow \{\}$$

- While the edge set \mathcal{T} does not connect all the vertices

- //Note that G' = (V, T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G'
- If $(Find(u) \neq Find(v))$
 - $T \leftarrow T \cup \{e\}$
 - Union(u, v)

-
$$S \leftarrow S \setminus \{e\}$$

• What is the running time of the above algorithm? $O(|E| \cdot \log |V|)$

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from *u* to *v* is the path with minimum length.

- Path length: Let G = (V, E) be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from u to v is the path with minimum length.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G} = (V, E)$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G = (V, E)}$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

• <u>Claim 1</u>: Shortest path is a *simple* path.

Problem

Single source shortest path: Given a weighted, directed graph $\overline{G = (V, E)}$ with positive edge weights and a source vertex *s*, find the shortest path from *s* to all other vertices in the graph.

- <u>Claim 1</u>: Shortest path is a *simple* path.
- <u>Claim 2</u>: For any vertex x ∈ V, let d(x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

$$\ \, {\bf 0} \ \, u\in S, \, v\in V\setminus S \ \, (that \ \, is, \, (u,v) \ \, is \ \, a \ \, cut \ \, edge),$$

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

- <u>Claim 2</u>: For any vertex x ∈ V, let d(x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:
 - **1** $u \in S$, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

<u>Claim 2</u>: For any vertex x ∈ V, let d(x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

1
$$u \in S$$
, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Claim 2: For any vertex x ∈ V, let d(x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

1
$$u \in S$$
, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

• What is the running time of the above algorithm?

Claim 2: For any vertex x ∈ V, let d(x) denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let e = (u, v) be an edge such that:

1
$$u \in S$$
, $v \in V \setminus S$ (that is, (u, v) is a cut edge),

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

- What is the running time of the above algorithm?
 - Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.

Claim 2: Let S be a subset of vertices containing s such that we know the shortest path length d(u) from s to any vertex in u ∈ S. Let e = (u, v) be an edge such that

$$u \in S, v \in V \setminus S,$$

2 $(d(u) + W_e)$ is the least among all such cut edges.

Then $d(v) = d(u) + W_e$.

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

• What is the running time of the above algorithm?

• Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.

Algorithm

Dijkstra's Algorithm(G,s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

(日) (同) (三) (三)

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1

Algorithm

Dijkstra's Algorithm(G,s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Algorithm

Dijkstra's Algorithm(G,s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17

・ 同 ト ・ ヨ ト ・ ヨ ト …

Algorithm

Dijkstra's Algorithm(G,s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17; d(B) = 21

< ロ > < 同 > < 回 > < 回 > < □ > <

Algorithm

Dijkstra's Algorithm(G, s) - $S \leftarrow \{s\}$ - $d(s) \leftarrow 0$ - While S does not contain all vertices in G - Let e = (u, v) be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$ - $d(v) \leftarrow d(u) + W_e$ - $S \leftarrow S \cup \{v\}$

Figure: The algorithm also implicitly produces a *shortest path tree* that gives the shortest paths from s to all vertices.

(日) (同) (三) (三)

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590