
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T ) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Union-Find: Used for storing partition of a set of elements.
The following two operations are supported:

1 Find(v): Find the partition to which the element v belongs.
2 Union(u, v): Merge the partition to which u belongs with the

partition to which v belongs.

Consider the following data structure.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v):
Union(u, v):

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Claim: Performing k union operations takes O(k log k) time in
the worst case when starting from a full partition.
Proof sketch: For any element u, every time its pointer needs
to be changed, the size of the partition that it belongs to at
least doubles in size. This means that the pointer for u cannot
change more than O(log k) times.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Kruskal’s algorithm using Union-Find.

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T ) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- If (Find(u) 6= Find(v))
- T ← T ∪ {e}
- Union(u, v)

- S ← S \ {e}

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Minimum Spanning Tree

Kruskal’s algorithm using Union-Find.

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T ) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- If (Find(u) 6= Find(v))
- T ← T ∪ {e}
- Union(u, v)

- S ← S \ {e}

What is the running time of the above algorithm? O(|E | · log |V |)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Path length: Let G = (V ,E ) be a weighted directed graph.
Given a path in G , the length of a path is defined to be the
sum of lengths of the edges in the path.

Shortest path: The shortest path from u to v is the path with
minimum length.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Path length: Let G = (V ,E ) be a weighted directed graph.
Given a path in G , the length of a path is defined to be the sum
of lengths of the edges in the path.
Shortest path: The shortest path from u to v is the path with
minimum length.

Problem

Single source shortest path: Given a weighted, directed graph
G = (V ,E ) with positive edge weights and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Problem

Single source shortest path: Given a weighted, directed graph
G = (V ,E ) with positive edge weights and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Claim 1: Shortest path is a simple path.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Problem

Single source shortest path: Given a weighted, directed graph
G = (V ,E ) with positive edge weights and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Claim 1: Shortest path is a simple path.
Claim 2: For any vertex x ∈ V , let d(x) denote the length of the
shortest path from s to vertex x . Let S be any subset of vertices
containing s. Let e = (u, v) be an edge such that:

1 u ∈ S , v ∈ V \ S (that is, (u, v) is a cut edge),
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Claim 2: For any vertex x ∈ V , let d(x) denote the length of the
shortest path from s to vertex x . Let S be any subset of vertices
containing s. Let e = (u, v) be an edge such that:

1 u ∈ S , v ∈ V \ S (that is, (u, v) is a cut edge),
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Claim 2: For any vertex x ∈ V , let d(x) denote the length of the
shortest path from s to vertex x . Let S be any subset of vertices
containing s. Let e = (u, v) be an edge such that:

1 u ∈ S , v ∈ V \ S (that is, (u, v) is a cut edge),
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Claim 2: For any vertex x ∈ V , let d(x) denote the length of the
shortest path from s to vertex x . Let S be any subset of vertices
containing s. Let e = (u, v) be an edge such that:

1 u ∈ S , v ∈ V \ S (that is, (u, v) is a cut edge),
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Claim 2: For any vertex x ∈ V , let d(x) denote the length of the
shortest path from s to vertex x . Let S be any subset of vertices
containing s. Let e = (u, v) be an edge such that:

1 u ∈ S , v ∈ V \ S (that is, (u, v) is a cut edge),
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

What is the running time of the above algorithm?

Same as that of the Prim’s algorithm. O(|E | · log |V |).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length d(u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (d(u) + We) is the least among all such cut edges.

Then d(v) = d(u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

What is the running time of the above algorithm?

Same as that of the Prim’s algorithm. O(|E | · log |V |).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E ) = 9

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E ) = 9; d(D) = 15

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E ) = 9; d(D) = 15; d(C ) = 17

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E ) = 9; d(D) = 15; d(C ) = 17; d(B) = 21

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Figure: The algorithm also implicitly produces a shortest path tree that gives the
shortest paths from s to all vertices.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


