COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Greedy Algorithms

Greedy Algorithms
 Minimum Spanning Tree

Algorithm

Kruskal's Algorithm(G)
$-S \leftarrow E ; T \leftarrow\{ \}$

- While the edge set T does not connect all the vertices
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
$-T \leftarrow T \cup\{e\}$
$-S \leftarrow S \backslash\{e\}$

Algorithm

Kruskal's Algorithm(G)

$-S \leftarrow E ; T \leftarrow\{ \}$

- While the edge set T does not connect all the vertices
- //Note that $G^{\prime}=(V, T)$ contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G^{\prime}
$-T \leftarrow T \cup\{e\}$
$-S \leftarrow S \backslash\{e\}$

Greedy Algorithms

- Union-Find: Used for storing partition of a set of elements. The following two operations are supported:
(1) Find (v) : Find the partition to which the element v belongs.
(2) Union (u, v) : Merge the partition to which u belongs with the partition to which v belongs.
- Consider the following data structure.

Greedy Algorithms

Minimum Spanning Tree

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
- Find (v):
- Union (u, v):

Greedy Algorithms
 Minimum Spanning Tree

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
- Find $(v): O(1)$
- Union(u, v):

Greedy Algorithms
 Minimum Spanning Tree

- Suppose we start from a full partition (i.e., each partition contains one element).
- How much time does the following operation take:
- Find(v): $O(1)$
- Union (u,v):
- Claim: Performing k union operations takes $O(k \log k)$ time in the worst case when starting from a full partition.
- Proof sketch: For any element u, every time its pointer needs to be changed, the size of the partition that it belongs to at least doubles in size. This means that the pointer for u cannot change more than $O(\log k)$ times.

Greedy Algorithms
 Minimum Spanning Tree

- Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)
$-S \leftarrow E ; T \leftarrow\{ \}$

- While the edge set T does not connect all the vertices
- //Note that $G^{\prime}=(V, T)$ contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G^{\prime}
- If $($ Find $(u) \neq$ Find $(v))$
- $T \leftarrow T \cup\{e\}$
- Union(u, v)
$-S \leftarrow S \backslash\{e\}$
- What is the running time of the above algorithm?

Greedy Algorithms
 Minimum Spanning Tree

- Kruskal's algorithm using Union-Find.

Algorithm

Kruskal's Algorithm(G)
$-S \leftarrow E ; T \leftarrow\{ \}$

- While the edge set T does not connect all the vertices
- //Note that $G^{\prime}=(V, T)$ contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G^{\prime}
- If $($ Find $(u) \neq$ Find $(v))$
- $T \leftarrow T \cup\{e\}$
- Union(u, v)
$-S \leftarrow S \backslash\{e\}$
- What is the running time of the above algorithm? $O(|E| \cdot \log |V|)$

Greedy Algorithms Shortest path

- Path length: Let $G=(V, E)$ be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from u to v is the path with minimum length.

Greedy Algorithms

Shortest path

- Path length: Let $G=(V, E)$ be a weighted directed graph. Given a path in G, the length of a path is defined to be the sum of lengths of the edges in the path.
- Shortest path: The shortest path from u to v is the path with minimum length.

Problem

Single source shortest path: Given a weighted, directed graph $\bar{G}=(V, E)$ with positive edge weights and a source vertex s, find the shortest path from s to all other vertices in the graph.

Greedy Algorithms Shortest path

Problem

Single source shortest path: Given a weighted, directed graph $G=(V, E)$ with positive edge weights and a source vertex s, find the shortest path from s to all other vertices in the graph.

- Claim 1: Shortest path is a simple path.

Greedy Algorithms
 Shortest path

Problem

Single source shortest path: Given a weighted, directed graph $G=(V, E)$ with positive edge weights and a source vertex s, find the shortest path from s to all other vertices in the graph.

- Claim 1: Shortest path is a simple path.
- Claim 2: For any vertex $x \in V$, let $d(x)$ denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, (u, v) is a cut edge),
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Greedy Algorithms

Shortest path

- Claim 2: For any vertex $x \in V$, let $d(x)$ denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, (u, v) is a cut edge),
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Greedy Algorithms

Shortest path

- Claim 2: For any vertex $x \in V$, let $d(x)$ denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, (u, v) is a cut edge),
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$

Greedy Algorithms

Shortest path

- Claim 2: For any vertex $x \in V$, let $d(x)$ denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, (u, v) is a cut edge),
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$
- What is the running time of the above algorithm?

Greedy Algorithms

Shortest path

- Claim 2: For any vertex $x \in V$, let $d(x)$ denote the length of the shortest path from s to vertex x. Let S be any subset of vertices containing s. Let $e=(u, v)$ be an edge such that:
(1) $u \in S, v \in V \backslash S$ (that is, (u, v) is a cut edge),
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
- $S \leftarrow S \cup\{v\}$
- What is the running time of the above algorithm?
- Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.

Greedy Algorithms

Shortest path

- Claim 2: Let S be a subset of vertices containing s such that we know the shortest path length $d(u)$ from s to any vertex in $u \in S$. Let $e=(u, v)$ be an edge such that
(1) $u \in S, v \in V \backslash S$,
(2) $\left(d(u)+W_{e}\right)$ is the least among all such cut edges.

Then $d(v)=d(u)+W_{e}$.

Algorithm

Dijkstra's Algorithm (G, s)

$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
- $S \leftarrow S \cup\{v\}$
- What is the running time of the above algorithm?
- Same as that of the Prim's algorithm. $O(|E| \cdot \log |V|)$.

Greedy Algorithms

Shortest path

```
Algorithm
Dijkstra's Algorithm (G, s)
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
- While \(S\) does not contain all vertices in \(G\)
- Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum value of \(d(u)+W_{e}\)
\(-d(v) \leftarrow d(u)+W_{e}\)
\(-S \leftarrow S \cup\{v\}\)
```


Figure: $d(s)=0$

Greedy Algorithms

Shortest path

```
Algorithm
Dijkstra's Algorithm ( \(G, s\) )
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
    \(-d(v) \leftarrow d(u)+W_{e}\)
    \(-S \leftarrow S \cup\{v\}\)
```


Figure: $d(s)=0 ; d(A)=1$

Greedy Algorithms

Shortest path

```
Algorithm
Dijkstra's Algorithm ( \(G, s\) )
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
    \(-d(v) \leftarrow d(u)+W_{e}\)
    \(-S \leftarrow S \cup\{v\}\)
```


Figure: $d(s)=0 ; d(A)=1 ; d(E)=9$

Greedy Algorithms

Shortest path

```
Algorithm
Dijkstra's Algorithm ( \(G, s\) )
    \(-S \leftarrow\{s\}\)
    \(-d(s) \leftarrow 0\)
    - While \(S\) does not contain all vertices in \(G\)
        - Let \(e=(u, v)\) be a cut edge across \((S, V \backslash S)\) with minimum
        value of \(d(u)+W_{e}\)
        \(-d(v) \leftarrow d(u)+W_{e}\)
        \(-S \leftarrow S \cup\{v\}\)
```


Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15$

Greedy Algorithms

Shortest path

Algorithm

```
Dijkstra's Algorithm(G,s)
    - S\leftarrow{s}
    -d(s)\leftarrow0
    - While S does not contain all vertices in G
    - Let e=(u,v) be a cut edge across (S,V\S) with minimum
        value of d(u)+We
    -d(v)\leftarrowd(u)+We
    -S\leftarrowS\cup{v}
```


Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15 ; d(C)=17$

Greedy Algorithms

Shortest path

Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$

Figure: $d(s)=0 ; d(A)=1 ; d(E)=9 ; d(D)=15 ; d(C)=17 ; d(B)=21$

Greedy Algorithms

Shortest path

Algorithm

Dijkstra's Algorithm (G, s)
$-S \leftarrow\{s\}$
$-d(s) \leftarrow 0$

- While S does not contain all vertices in G
- Let $e=(u, v)$ be a cut edge across $(S, V \backslash S)$ with minimum value of $d(u)+W_{e}$
$-d(v) \leftarrow d(u)+W_{e}$
$-S \leftarrow S \cup\{v\}$

Figure: The algorithm also implicitly produces a shortest path tree that gives the shortest paths from s to all vertices.

End

