COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Graph Algorithms

Graph Algoithms

Strongly connected components

Algorithm

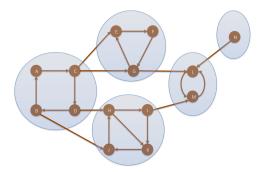
- $time \leftarrow 0$

GraphDFS-with-start-finish(G)

- While there is an "unexplored" vertex \boldsymbol{u}
- DFS-time(u)

DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor \boldsymbol{v} of \boldsymbol{u}
 - DFS-time(v)
- $finish(u) \leftarrow + + time$



Algorithm

- time ← 0
- GraphDFS-with-start-finish(G)
 - While there is an "unexplored" vertex u
 - DFS-time(u)

DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor v of u
 - DFS-time(v)
- $finish(u) \leftarrow + + time$
- Let V₁, V₂, ..., V_k be the k vertex sets of strongly connected components of G.
- Consider G^{scc} where the vertices are labeled 1, 2, ..., k.
- <u>Claim 1</u>: If there is a directed edge from node i to node j in G^{scc}, then the highest finish time among vertices in V_i is bigger than the highest finish time among vertices in V_j, when Graph-DFS-with-start-finish(G) time executed.

Course Overview

- Material that will be covered in the course:
 - Basic graph algorithms
 - Algorithm Design Techniques
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Network Flows
 - Computational intractability

 ${\sf Greedy}\ {\sf Algorithms}$

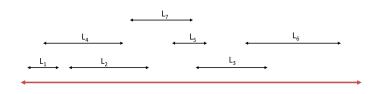
Greedy Algorithms Introduction

- "A local (greedy) decision rule leads to a globally optimal solution."
- There are two ways to show the above property:
 - Greedy stays ahead
 - Exchange argument

Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

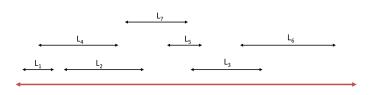


Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

- Candidate greedy choices:
 - Earliest start time
 - Smallest duration
 - Least overlapping

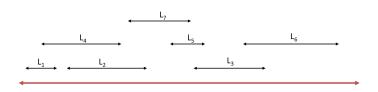


Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

- Candidate greedy choices:
 - Earliest start time
 - Smallest duration
 - Least overlapping
 - Earliest finish time



Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))

Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

- Initialize R to contain all intervals
- While *R* is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))
- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?

Interval scheduling

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?

Interval scheduling

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

• Claim 1: $F(a_1) \leq F(o_1)$.

Interval scheduling

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

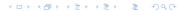
- Claim 1: $F(a_1) \leq F(o_1)$.
- Claim 2: If $F(a_1) \le F(o_1)$, $F(a_2) \le F(o_2)$, ..., $F(a_{i-1}) \le F(o_{i-1})$, then $F(a_i) \le F(o_i)$.

Interval scheduling

- Question: Let O denote some optimal subset and A be the subset given by GreedySchedule. Can we show that A = O?
- Question Can we show that |O| = |A|?
- Yes we can! We will use "greedy stays ahead" method to show this.

Proof sketch

- Let a₁, a₂, ..., a_k be the sequence of requests that
 GreedySchedule picks and o₁, o₂, ..., o_l be the requests in O
 sorted in non-decreasing order by finishing time.
- We will show by induction that $\forall i, F(a_i) \leq F(o_i)$
 - Claim 1 (base case): $F(a_1) \leq F(o_1)$.
 - Claim 2 (inductive step): If $F(a_1) \le F(o_1)$, $F(a_2) \le F(o_2)$, ..., $F(a_{i-1}) \le F(o_{i-1})$, then $F(a_i) \le F(o_i)$.
- GreedySchedule could not have stopped after a_k .



Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))
- Running time?

Greedy Algorithms Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form $\overline{(S(i), F(i))}$, find the largest subset of non-overlapping intervals.

Algorithm

- While *R* is not empty
- Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
- Delete all intervals in R that overlaps with (S(i), F(i))
- Running time? $O(n \log n)$

Job scheduling

Problem

Job scheduling: You are given n jobs and you are supposed to schedule these jobs on a machine. Each job i consists of a duration T(i) and a deadline D(i). The lateness of a job w.r.t. a schedule is defined as $\max(0, F(i) - D(i))$, where F(i) is the finishing time of job i as per the schedule. The goal is to minimise the maximum lateness.

End