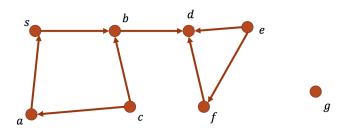
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Graph Algorithms Cycles

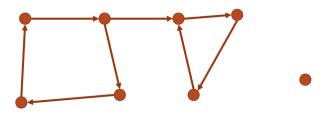
- Question: Given a directed graph that contains a cycle. Is topological ordering possible?
- Question: Given a DAG. Is topological ordering possible? If so give an algorithm that outputs one such order. What is the running time?



Strongly connected components

Problem

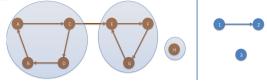
Given a directed graph G = (V, E), output all the strongly connected components of G.



Strongly connected components

Problem

Given a directed graph G = (V, E), output all the strongly connected components of G.



- Question: Given a directed graph G, consider a graph G^{scc} defined as follows:
 - There is a vertex in G^{scc} for each strongly connected component of G. That is, if A₁, A₂, ..., A_k are k vertex sets of different strongly connected components of G, then G^{scc} has k vertices 1, ..., k
 - There is a directed edge from i to j in G^{scc} iff there are $u \in A_i$ and $v \in A_j$ such that there is a directed edge from u to v in G.

What kind of graph is G^{scc} ?

Problem

Given a directed graph G = (V, E), output all the strongly connected components of G.

- Given a directed graph G, consider a graph G^{scc} defined as follows:
 - There is a vertex in G^{scc} for each strongly connected component of G. That is, if A₁, A₂, ..., A_k are k vertex sets of different strongly connected components of G, then G^{scc} has k vertices 1, ..., k
 - There is a directed edge from i to j in G^{scc} iff there are $u \in A_i$ and $v \in A_j$ such that there is a directed edge from u to v in G.
- Claim: For any directed graph G, the graph G^{scc} constructed as above is always a DAG.

Strongly connected components

- Suppose during GraphDFS(G), we record:
 - the time at which a node v is discovered as the start time of v denoted by start(v), and
 - the time at which we are done exploring the neighborhood of v (or when the recursive call returns) as the finish time of v denoted by finish(v).
- The following procedure records these times.

Algorithm

- $time \leftarrow 0$

GraphDFS-with-start-finish(G)

- While there is an "unexplored" vertex u
- DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor v of u
 - DFS-time(v)
- $finish(u) \leftarrow + + time$

Strongly connected components

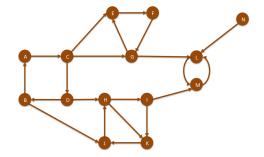
Algorithm

- $time \leftarrow 0$

GraphDFS-with-start-finish(G)

- While there is an "unexplored" vertex u
- DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor v of u
 - DFS-time(v)
- $finish(u) \leftarrow + + time$



Strongly connected components

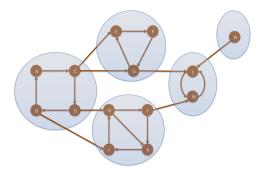
Algorithm

- $time \leftarrow 0$

GraphDFS-with-start-finish(G)

- While there is an "unexplored" vertex \boldsymbol{u}
- DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor \boldsymbol{v} of \boldsymbol{u}
 - DFS-time(v)
- $finish(u) \leftarrow + + time$



Algorithm

- time ← 0
- GraphDFS-with-start-finish(G)
 - While there is an "unexplored" vertex u
 - DFS-time(u)

- Mark u as "explored" and set $start(u) \leftarrow + + time$
- While there is an "unexplored" neighbor v of u
 - DFS-time(v)
- $finish(u) \leftarrow + + time$
- Let V₁, V₂, ..., V_k be the k vertex sets of strongly connected components of G.
- Consider G^{scc} where the vertices are labeled 1, 2, ..., k.
- <u>Claim 1</u>: If there is a directed edge from node i to node j in G^{scc}, then the highest finish time among vertices in V_i is bigger than the highest finish time among vertices in V_j, when Graph-DFS-with-start-finish(G) time executed.

End