COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Graph Algorithms

Graph Algorithms BFS

```
Breadth First Search (BFS)
\(\operatorname{BFS}(G, s)\)
    \(-\operatorname{Layer}(0)=\{s\}\)
    \(-i \leftarrow 1\)
    - While(true)
    - Visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
    - Put these nodes in the set Layer(i)
    - If Layer \((i)\) is empty, then end
    \(-i \leftarrow i+1\)
```


- Theorem 1: The shortest path from s to any vertex in $\operatorname{Layer}(i)$ is equal to i.

Graph Algorithms BFS

- Theorem 1: The shortest path from s to any vertex in $\operatorname{Layer}(i)$ is equal to i.

Proof sketch

- We will prove by induction. Let $P(i)$ denote the statement: The shortest path from s to any vertex in Layer(i) is equal to i.
- We will prove that $P(i)$ is true for all i using induction.
- Base case: $P(0)$ is true since $\operatorname{Layer}(0)$ contains s.
- Inductive step: Assume $P(0), \ldots, P(k)$ are true. We will show that $P(k+1)$ is true.
- Assume for the sake of contradiction that $P(k+1)$ is not true.
- This implies that there is a vertex v in $\operatorname{Layer}(k+1)$ such that the shortest path length from s to v is $<k+1$ (the case $>k+1$ is skipped for class discussion)
- Consider such a path from s to v. Let u be the vertex in this path just before v.
- Claim 1: u is contained in $\operatorname{Layer}(k)$.
- This gives us a contradiction since by induction hypothesis, the shortest path length from s to u is k.

Graph Algorithms BFS

```
Breadth First Search (BFS)
\(\operatorname{BFS}(G, s)\)
    - \(\operatorname{Layer}(0)=\{s\}\)
    \(-i \leftarrow 1\)
    - While(true)
    - Visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
    - Put these nodes in the set Layer(i)
    - If Layer \((i)\) is empty, then end
    \(-i \leftarrow i+1\)
```


- What is the running time of BFS given that the graph is given in adjacency list representation?

Graph Algorithms BFS

```
Breadth First Search (BFS)
\(\operatorname{BFS}(G, s)\)
    \(-\operatorname{Layer}(0)=\{s\}\)
    \(-i \leftarrow 1\)
    - While(true)
    - Visit all new nodes that have an edge to a vertex in \(\operatorname{Layer}(i-1)\)
    - Put these nodes in the set Layer(i)
    - If Layer \((i)\) is empty, then end
    \(-i \leftarrow i+1\)
```


- What is the running time of BFS given that the graph is given in adjacency list representation? $O(n+m)$

Graph Algorithms BFS

- The BFS algorithm defines the following BFS tree rooted at s
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms BFS application

- Bipartite graph: A graph is bipartite iff the vertices can be partitioned into two sets such that there is no edge between any pair of vertices in the same set.

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Consider BFS below
- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$?

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$
$-\operatorname{Layer}(0)=\{s\}$
$-i \leftarrow 1$

- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer (i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Consider BFS below
- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.

Breadth First Search (BFS)

$\operatorname{BFS}(G, s)$
$-\operatorname{Layer}(0)=\{s\}$
$-i \leftarrow 1$

- While(true)
- Visit all new nodes that have an edge to a vertex in $\operatorname{Layer}(i-1)$
- Put these nodes in the set Layer (i)
- If Layer (i) is empty, then end
$-i \leftarrow i+1$

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite?

Graph Algorithms
 BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- For sake of contradiction assume that the graph is bipartite.
- Consider a cycle of odd length with nodes numbered $v_{1}, v_{2}, \ldots, v_{2 k+1}$.
- Since the graph is bipartite the nodes may be partitioned into two sets X and Y s.t. there does not exist en edge between nodes in the same partition.
- If node v_{1} is in X, then v_{2} has to be in Y, and node v_{3} has to be in X and so on. So, node $v_{2 k+1}$ has to be in X. But then there is a edge between v_{1} and $v_{2 k+1}$.

Graph Algorithms BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- Can you now use BFS to check if the graph is bipartite?

Graph Algorithms
 BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

- Is it possible that there is an edge between vertices which belong to sets $\operatorname{Layer}(i)$ and $\operatorname{Layer}(j)$ such that $j-1>i$? No.
- Suppose the given graph contains a cycle of odd length. Can this graph be bipartite? No.
- Can you now use BFS to check if the graph is bipartite?

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.

Graph Algorithms
 BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.
- Claim 1.2: If IsBipartite (G) outputs "yes", then G is bipartite.

Graph Algorithms
 BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- Claim 1: Any given graph G is bipartite if and only if IsBipartite (G) outputs "yes".

Proof sketch of Claim 1

- Claim 1.1: If IsBipartite (G) outputs "no", then G is not bipartite.
- Since there is an odd cycle in G.
- Claim 1.2: If IsBipartite (G) outputs "yes", then G is bipartite.
- Since the odd and the even layers forms the two partitions of a bipartite graph.

Graph Algorithms BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What is the running time of the above algorithm?

Graph Algorithms
 BFS application

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What is the running time of the above algorithm? $O(n+m)$
- While running the BFS algorithm, we maintain an array A such that the $i^{\text {th }}$ entry of the array stores the layer to which the $i^{\text {th }}$ vertex belongs to as per the BFS execution. Note that maintaining such an array while running BFS will only cost $O(1)$ time per vertex. So the total time of running BFS and constructing the array A would be $O(n+m)$.
- Now, we need to go thorough all edges in the graph and for an edge (i, j), check if $A[i]=A[j]$. This would take a total of $O(m)$ time.
- So the total running time of the algorithm will be $O(n+m)$.

Graph Algorithms
 BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Algorithm

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")
- What if G is not a strongly connected graph?

Graph Algorithms
 BFS application

Problem

Given a graph $G=(V, E)$, check if the graph is bipartite.

Algorithm (for strongly connected graphs)

IsBipartite (G)

- Run BFS and check if two vertices in the same layer has an edge between them
- If yes then output("no") else output("yes")

Algorithm (for any graph)

IsBipartite (G)

- Let R contain all vertices of G
- While R is not empty
- Let s be an arbitrary vertex in R
- Run $\operatorname{BFS}(G, s)$ and check if two vertices in the same layer have an edge between them
- If yes then output("no")
- Remove all vertices from R that were explored while running $\operatorname{BFS}(G, s)$
- Output("yes")

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- What is the running time of DFS?

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- What is the running time of DFS? $O(n+m)$

Graph Algorithms DFS

Depth First Search (DFS)

DFS (s)

- Mark s as explored
- For each unexplored neighbour v of s
- Recursively call DFS (v)
- The DFS algorithm defined the following "DFS tree" rooted at s
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms DFS

- The DFS algorithm defined the following "DFS tree" rooted at s
- Vertex u is the parent of vertex v if u caused the immediate discovery of v.

Graph Algorithms DFS

- DFS tree Vs BFS tree

End

